|
| 1 | +# coding: utf-8 |
| 2 | +# 2021/5/25 @ tongshiwei |
| 3 | + |
| 4 | +import logging |
| 5 | +import torch |
| 6 | +from EduKTM import KTM |
| 7 | +from torch import nn |
| 8 | +import torch.nn.functional as F |
| 9 | +from tqdm import tqdm |
| 10 | +from EduKTM.utils import sequence_mask, SLMLoss, tensor2list, pick |
| 11 | +from sklearn.metrics import roc_auc_score, accuracy_score |
| 12 | +import numpy as np |
| 13 | + |
| 14 | + |
| 15 | +class DKTNet(nn.Module): |
| 16 | + def __init__(self, ku_num, hidden_num, add_embedding_layer=False, embedding_dim=None, dropout=0.0, **kwargs): |
| 17 | + super(DKTNet, self).__init__() |
| 18 | + self.ku_num = ku_num |
| 19 | + self.hidden_dim = hidden_num |
| 20 | + self.output_dim = ku_num |
| 21 | + if add_embedding_layer is True: |
| 22 | + embedding_dim = self.hidden_dim if embedding_dim is None else embedding_dim |
| 23 | + self.embeddings = nn.Sequential( |
| 24 | + nn.Embedding(ku_num * 2, embedding_dim), |
| 25 | + nn.Dropout(kwargs.get("embedding_dropout", 0.2)) |
| 26 | + ) |
| 27 | + rnn_input_dim = embedding_dim |
| 28 | + else: |
| 29 | + self.embeddings = lambda x: F.one_hot(x, num_classes=self.output_dim * 2).float() |
| 30 | + rnn_input_dim = ku_num * 2 |
| 31 | + |
| 32 | + self.rnn = nn.RNN(rnn_input_dim, hidden_num, 1, batch_first=True, nonlinearity='tanh') |
| 33 | + self.fc = nn.Linear(self.hidden_dim, self.output_dim) |
| 34 | + self.dropout = nn.Dropout(dropout) |
| 35 | + self.sig = nn.Sigmoid() |
| 36 | + |
| 37 | + def forward(self, responses, mask=None, begin_state=None): |
| 38 | + responses = self.embeddings(responses) |
| 39 | + output, hn = self.rnn(responses) |
| 40 | + output = self.sig(self.fc(self.dropout(output))) |
| 41 | + if mask is not None: |
| 42 | + output = sequence_mask(output, mask) |
| 43 | + return output, hn |
| 44 | + |
| 45 | + |
| 46 | +class DKTPlus(KTM): |
| 47 | + def __init__(self, ku_num, hidden_num, net_params: dict = None, loss_params=None): |
| 48 | + super(DKTPlus, self).__init__() |
| 49 | + self.dkt_net = DKTNet( |
| 50 | + ku_num, |
| 51 | + hidden_num, |
| 52 | + **(net_params if net_params is not None else {}) |
| 53 | + ) |
| 54 | + self.loss_params = loss_params if loss_params is not None else {} |
| 55 | + |
| 56 | + def train(self, train_data, test_data=None, *, epoch: int, device="cpu", lr=0.001) -> ...: |
| 57 | + loss_function = SLMLoss(**self.loss_params) |
| 58 | + |
| 59 | + trainer = torch.optim.Adam(self.dkt_net.parameters(), lr) |
| 60 | + |
| 61 | + for e in range(epoch): |
| 62 | + losses = [] |
| 63 | + for (data, data_mask, label, pick_index, label_mask) in tqdm(train_data, "Epoch %s" % e): |
| 64 | + # convert to device |
| 65 | + data: torch.Tensor = data.to(device) |
| 66 | + data_mask: torch.Tensor = data_mask.to(device) |
| 67 | + label: torch.Tensor = label.to(device) |
| 68 | + pick_index: torch.Tensor = pick_index.to(device) |
| 69 | + label_mask: torch.Tensor = label_mask.to(device) |
| 70 | + |
| 71 | + # real training |
| 72 | + predicted_response, _ = self.dkt_net(data, data_mask) |
| 73 | + loss = loss_function(predicted_response, pick_index, label, label_mask) |
| 74 | + |
| 75 | + # back propagation |
| 76 | + trainer.zero_grad() |
| 77 | + loss.backward() |
| 78 | + trainer.step() |
| 79 | + |
| 80 | + losses.append(loss.mean().item()) |
| 81 | + print("[Epoch %d] SLMoss: %.6f" % (e, float(np.mean(losses)))) |
| 82 | + |
| 83 | + if test_data is not None: |
| 84 | + auc, accuracy = self.eval(test_data) |
| 85 | + print("[Epoch %d] auc: %.6f, accuracy: %.6f" % (e, auc, accuracy)) |
| 86 | + |
| 87 | + def eval(self, test_data, device="cpu") -> tuple: |
| 88 | + self.dkt_net.eval() |
| 89 | + y_true = [] |
| 90 | + y_pred = [] |
| 91 | + |
| 92 | + for (data, data_mask, label, pick_index, label_mask) in tqdm(test_data, "evaluating"): |
| 93 | + # convert to device |
| 94 | + data: torch.Tensor = data.to(device) |
| 95 | + data_mask: torch.Tensor = data_mask.to(device) |
| 96 | + label: torch.Tensor = label.to(device) |
| 97 | + pick_index: torch.Tensor = pick_index.to(device) |
| 98 | + label_mask: torch.Tensor = label_mask.to(device) |
| 99 | + |
| 100 | + # real evaluating |
| 101 | + output, _ = self.dkt_net(data, data_mask) |
| 102 | + output = output[:, :-1] |
| 103 | + output = pick(output, pick_index.to(output.device)) |
| 104 | + pred = tensor2list(output) |
| 105 | + label = tensor2list(label) |
| 106 | + for i, length in enumerate(label_mask.numpy().tolist()): |
| 107 | + length = int(length) |
| 108 | + y_true.extend(label[i][:length]) |
| 109 | + y_pred.extend(pred[i][:length]) |
| 110 | + self.dkt_net.train() |
| 111 | + return roc_auc_score(y_true, y_pred), accuracy_score(y_true, np.array(y_pred) >= 0.5) |
| 112 | + |
| 113 | + def save(self, filepath) -> ...: |
| 114 | + torch.save(self.dkt_net.state_dict(), filepath) |
| 115 | + logging.info("save parameters to %s" % filepath) |
| 116 | + |
| 117 | + def load(self, filepath): |
| 118 | + self.dkt_net.load_state_dict(torch.load(filepath)) |
| 119 | + logging.info("load parameters from %s" % filepath) |
0 commit comments