|
| 1 | +# coding: utf-8 |
| 2 | +# 2021/8/1 @ tongshiwei |
| 3 | + |
| 4 | +import json |
| 5 | +from EduNLP.constant import MODEL_DIR |
| 6 | +from ..Vector import T2V, get_pretrained_t2v as get_t2v_pretrained_model |
| 7 | +from ..Tokenizer import Tokenizer, get_tokenizer |
| 8 | +from EduNLP import logger |
| 9 | + |
| 10 | +__all__ = ["I2V", "D2V", "get_pretrained_i2v"] |
| 11 | + |
| 12 | + |
| 13 | +class I2V(object): |
| 14 | + def __init__(self, tokenizer, t2v, *args, tokenizer_kwargs: dict = None, pretrained_t2v=False, **kwargs): |
| 15 | + """ |
| 16 | +
|
| 17 | + Parameters |
| 18 | + ---------- |
| 19 | + tokenizer: str |
| 20 | + the tokenizer name |
| 21 | + t2v: str |
| 22 | + the name of token2vector model |
| 23 | + args: |
| 24 | + the parameters passed to t2v |
| 25 | + tokenizer_kwargs: dict |
| 26 | + the parameters passed to tokenizer |
| 27 | + pretrained_t2v: bool |
| 28 | + kwargs: |
| 29 | + the parameters passed to t2v |
| 30 | + """ |
| 31 | + self.tokenizer: Tokenizer = get_tokenizer(tokenizer, **tokenizer_kwargs if tokenizer_kwargs is not None else {}) |
| 32 | + if pretrained_t2v: |
| 33 | + logger.info("Use pretrained t2v model %s" % t2v) |
| 34 | + self.t2v = get_t2v_pretrained_model(t2v, kwargs.get("model_dir", MODEL_DIR)) |
| 35 | + else: |
| 36 | + self.t2v = T2V(t2v, *args, **kwargs) |
| 37 | + self.params = { |
| 38 | + "tokenizer": tokenizer, |
| 39 | + "tokenizer_kwargs": tokenizer_kwargs, |
| 40 | + "t2v": t2v, |
| 41 | + "args": args, |
| 42 | + "kwargs": kwargs, |
| 43 | + "pretrained_t2v": pretrained_t2v |
| 44 | + } |
| 45 | + |
| 46 | + def __call__(self, items, *args, **kwargs): |
| 47 | + return self.infer_vector(items, *args, **kwargs) |
| 48 | + |
| 49 | + def tokenize(self, items, indexing=True, padding=False, *args, **kwargs) -> list: |
| 50 | + return self.tokenizer(items, *args, **kwargs) |
| 51 | + |
| 52 | + def infer_vector(self, items, tokenize=True, indexing=False, padding=False, *args, **kwargs) -> tuple: |
| 53 | + raise NotImplementedError |
| 54 | + |
| 55 | + def infer_item_vector(self, tokens, *args, **kwargs) -> ...: |
| 56 | + return self.infer_vector(tokens, *args, **kwargs)[0] |
| 57 | + |
| 58 | + def infer_token_vector(self, tokens, *args, **kwargs) -> ...: |
| 59 | + return self.infer_vector(tokens, *args, **kwargs)[1] |
| 60 | + |
| 61 | + def save(self, config_path, *args, **kwargs): |
| 62 | + with open(config_path, "w", encoding="utf-8") as wf: |
| 63 | + json.dump(self.params, wf, ensure_ascii=False, indent=2) |
| 64 | + |
| 65 | + @classmethod |
| 66 | + def load(cls, config_path, *args, **kwargs): |
| 67 | + with open(config_path, encoding="utf-8") as f: |
| 68 | + params: dict = json.load(f) |
| 69 | + tokenizer = params.pop("tokenizer") |
| 70 | + t2v = params.pop("t2v") |
| 71 | + args = params.pop("args") |
| 72 | + kwargs = params.pop("kwargs") |
| 73 | + params.update(kwargs) |
| 74 | + return cls(tokenizer, t2v, *args, **params) |
| 75 | + |
| 76 | + @classmethod |
| 77 | + def from_pretrained(cls, name, model_dir=MODEL_DIR, *args, **kwargs): |
| 78 | + raise NotImplementedError |
| 79 | + |
| 80 | + @property |
| 81 | + def vector_size(self): |
| 82 | + return self.t2v.vector_size |
| 83 | + |
| 84 | + |
| 85 | +class D2V(I2V): |
| 86 | + def infer_vector(self, items, tokenize=True, indexing=False, padding=False, *args, **kwargs) -> tuple: |
| 87 | + tokens = self.tokenize(items, return_token=True) if tokenize is True else items |
| 88 | + return self.t2v(tokens, *args, **kwargs), None |
| 89 | + |
| 90 | + @classmethod |
| 91 | + def from_pretrained(cls, name, model_dir=MODEL_DIR, *args, **kwargs): |
| 92 | + return cls("text", name, pretrained_t2v=True, model_dir=model_dir) |
| 93 | + |
| 94 | + |
| 95 | +MODELS = { |
| 96 | + "d2v_all_256": [D2V, "d2v_all_256"], |
| 97 | + "d2v_sci_256": [D2V, "d2v_sci_256"], |
| 98 | + "d2v_eng_256": [D2V, "d2v_eng_256"], |
| 99 | + "d2v_lit_256": [D2V, "d2v_lit_256"], |
| 100 | +} |
| 101 | + |
| 102 | + |
| 103 | +def get_pretrained_i2v(name, model_dir=MODEL_DIR): |
| 104 | + if name not in MODELS: |
| 105 | + raise KeyError( |
| 106 | + "Unknown model name %s, use one of the provided models: %s" % (name, ", ".join(MODELS.keys())) |
| 107 | + ) |
| 108 | + _class, *params = MODELS[name] |
| 109 | + return _class.from_pretrained(*params, model_dir=model_dir) |
0 commit comments