Skip to content

Commit 2edad3e

Browse files
authored
DOCUMENTATION: Update math notations in corporation docs (#2452)
1 parent 210c338 commit 2edad3e

File tree

13 files changed

+452
-149
lines changed

13 files changed

+452
-149
lines changed

src/Documentation/doc/en/advanced/corporation/basic-gameplay-and-term.md

Lines changed: 3 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -14,7 +14,9 @@ Each division can expand to 6 cities.
1414

1515
Each industry has different input materials and output materials/products. For example: Agriculture needs Water and Chemicals to produce Plants and Food. The number next to each material is its "coefficient" (You can call it "weight" or "factor" if you want).
1616

17-
$$0.5\ \textit{Water}+0.2\ \textit{Chemicals} \Rightarrow 1\ \textit{Plants}+1\ \textit{Food}$$
17+
$$
18+
0.5\ \textit{Water}+0.2\ \textit{Chemicals} \Rightarrow 1\ \textit{Plants}+1\ \textit{Food}
19+
$$
1820

1921
There is no "offline progress" in corporation. When you go offline, the corporation accumulates bonus time.
2022

src/Documentation/doc/en/advanced/corporation/boost-material.md

Lines changed: 75 additions & 25 deletions
Original file line numberDiff line numberDiff line change
@@ -60,15 +60,21 @@ Let's define:
6060

6161
Assuming the same warehouse setup in all cities, the division production multiplier is:
6262

63-
$$F(x,y,z,w) = \sum_{i = 1}^{6}\left( (1 + 0.002\ast x)^{c_{1}}\ast(1 + 0.002\ast y)^{c_{2}}{\ast(1 + 0.002\ast z)}^{c_{3}}{\ast(1 + 0.002\ast w)}^{c_{4}} \right)^{0.73}$$
63+
$$
64+
F(x,y,z,w) = \sum_{i = 1}^{6}\left( (1 + 0.002\ast x)^{c_{1}}\ast(1 + 0.002\ast y)^{c_{2}}{\ast(1 + 0.002\ast z)}^{c_{3}}{\ast(1 + 0.002\ast w)}^{c_{4}} \right)^{0.73}
65+
$$
6466

6567
In order to find the maximum of the function above, we can find the maximum of this function:
6668

67-
$$F(x,y,z,w) = (1 + 0.002\ast x)^{c_{1}}\ast(1 + 0.002\ast y)^{c_{2}}{\ast(1 + 0.002\ast z)}^{c_{3}}{\ast(1 + 0.002\ast w)}^{c_{4}}$$
69+
$$
70+
F(x,y,z,w) = (1 + 0.002\ast x)^{c_{1}}\ast(1 + 0.002\ast y)^{c_{2}}{\ast(1 + 0.002\ast z)}^{c_{3}}{\ast(1 + 0.002\ast w)}^{c_{4}}
71+
$$
6872

6973
Constraint function (S is storage space):
7074

71-
$$G(x,y,z,w) = s_{1}\ast x + s_{2}\ast y + s_{3}\ast z + s_{4}\ast w = S$$
75+
$$
76+
G(x,y,z,w) = s_{1}\ast x + s_{2}\ast y + s_{3}\ast z + s_{4}\ast w = S
77+
$$
7278

7379
Problem: Find the maximum of $F(x,y,z,w)$ with constraint $G(x,y,z,w)$.
7480

@@ -80,88 +86,132 @@ Disclaimer: This is based on discussion between \@Jesus and \@yichizhng on Disco
8086

8187
By using the [Lagrange multiplier](https://en.wikipedia.org/wiki/Lagrange_multiplier) method, we have this system:
8288

83-
$$\begin{cases} \frac{\partial F}{\partial x} &= \lambda\frac{\partial G}{\partial x} \newline \frac{\partial F}{\partial y} &= \lambda\frac{\partial G}{\partial y} \newline \frac{\partial F}{\partial z} &= \lambda\frac{\partial G}{\partial z} \newline \frac{\partial F}{\partial w} &= \lambda\frac{\partial G}{\partial w} \newline G(x,y,z,w) &= S\end{cases}$$
89+
$$
90+
\begin{cases} \frac{\partial F}{\partial x} &= \lambda\frac{\partial G}{\partial x} \newline \frac{\partial F}{\partial y} &= \lambda\frac{\partial G}{\partial y} \newline \frac{\partial F}{\partial z} &= \lambda\frac{\partial G}{\partial z} \newline \frac{\partial F}{\partial w} &= \lambda\frac{\partial G}{\partial w} \newline G(x,y,z,w) &= S\end{cases}
91+
$$
8492

8593
In order to solve this system, we have 2 choices:
8694

8795
- Solve that system with [Ceres Solver](./miscellany.md).
8896
- Do the hard work with basic calculus and algebra. This is the optimal way in both accuracy and performance, so we'll focus on it. In the following sections, I'll show the proof for this solution.
8997

90-
$$x\ast s_{1} = \frac{S - 500\ast\left( \frac{s_{1}}{c_{1}}\ast\left( c_{2} + c_{3} + c_{4} \right) - \left( s_{2} + s_{3} + s_{4} \right) \right)}{\frac{c_{1} + c_{2} + c_{3} + c_{4}}{c_{1}}}$$
98+
$$
99+
x\ast s_{1} = \frac{S - 500\ast\left( \frac{s_{1}}{c_{1}}\ast\left( c_{2} + c_{3} + c_{4} \right) - \left( s_{2} + s_{3} + s_{4} \right) \right)}{\frac{c_{1} + c_{2} + c_{3} + c_{4}}{c_{1}}}
100+
$$
91101

92-
$$y\ast s_{2} = \frac{S - 500\ast\left( \frac{s_{2}}{c_{2}}\ast\left( c_{1} + c_{3} + c_{4} \right) - \left( s_{1} + s_{3} + s_{4} \right) \right)}{\frac{c_{1} + c_{2} + c_{3} + c_{4}}{c_{2}}}$$
102+
$$
103+
y\ast s_{2} = \frac{S - 500\ast\left( \frac{s_{2}}{c_{2}}\ast\left( c_{1} + c_{3} + c_{4} \right) - \left( s_{1} + s_{3} + s_{4} \right) \right)}{\frac{c_{1} + c_{2} + c_{3} + c_{4}}{c_{2}}}
104+
$$
93105

94-
$$z\ast s_{3} = \frac{S - 500\ast\left( \frac{s_{3}}{c_{3}}\ast\left( c_{1} + c_{2} + c_{4} \right) - \left( s_{1} + s_{2} + s_{4} \right) \right)}{\frac{c_{1} + c_{2} + c_{3} + c_{4}}{c_{3}}}$$
106+
$$
107+
z\ast s_{3} = \frac{S - 500\ast\left( \frac{s_{3}}{c_{3}}\ast\left( c_{1} + c_{2} + c_{4} \right) - \left( s_{1} + s_{2} + s_{4} \right) \right)}{\frac{c_{1} + c_{2} + c_{3} + c_{4}}{c_{3}}}
108+
$$
95109

96-
$$w\ast s_{4} = \frac{S - 500\ast\left( \frac{s_{4}}{c_{4}}\ast\left( c_{1} + c_{2} + c_{3} \right) - \left( s_{1} + s_{2} + s_{3} \right) \right)}{\frac{c_{1} + c_{2} + c_{3} + c_{4}}{c_{4}}}$$
110+
$$
111+
w\ast s_{4} = \frac{S - 500\ast\left( \frac{s_{4}}{c_{4}}\ast\left( c_{1} + c_{2} + c_{3} \right) - \left( s_{1} + s_{2} + s_{3} \right) \right)}{\frac{c_{1} + c_{2} + c_{3} + c_{4}}{c_{4}}}
112+
$$
97113

98114
## Proof
99115

100116
Define: $k = 0.002$
101117

102-
$$\begin{cases}\frac{\partial F}{\partial x} = \left( k\ast c_{1}\ast(1 + k\ast x)^{c_{1} - 1} \right)\ast(1 + k\ast y)^{c_{2}}\ast(1 + k\ast z)^{c_{3}}\ast(1 + k\ast w)^{c_{4}} = \lambda\ast s_{1} \newline \frac{\partial F}{\partial y} = (1 + k\ast x)^{c_{1}}\ast\left( k\ast c_{2}\ast(1 + k\ast y)^{c_{2} - 1} \right)\ast(1 + k\ast z)^{c_{3}}\ast(1 + k\ast w)^{c_{4}} = \lambda\ast s_{2} \end{cases}$$
118+
$$
119+
\begin{cases}\frac{\partial F}{\partial x} = \left( k\ast c_{1}\ast(1 + k\ast x)^{c_{1} - 1} \right)\ast(1 + k\ast y)^{c_{2}}\ast(1 + k\ast z)^{c_{3}}\ast(1 + k\ast w)^{c_{4}} = \lambda\ast s_{1} \newline \frac{\partial F}{\partial y} = (1 + k\ast x)^{c_{1}}\ast\left( k\ast c_{2}\ast(1 + k\ast y)^{c_{2} - 1} \right)\ast(1 + k\ast z)^{c_{3}}\ast(1 + k\ast w)^{c_{4}} = \lambda\ast s_{2} \end{cases}
120+
$$
103121

104122
105123

106-
$$k\ast c_{1}\ast(1 + k\ast x)^{- 1}\ast s_{2} = k\ast c_{2}\ast(1 + k\ast y)^{- 1}\ast s_{1}$$
124+
$$
125+
k\ast c_{1}\ast(1 + k\ast x)^{- 1}\ast s_{2} = k\ast c_{2}\ast(1 + k\ast y)^{- 1}\ast s_{1}
126+
$$
107127

108128
109129

110-
$$c_{1}\ast s_{2}\ast(1 + k\ast y) = c_{2}\ast s_{1}\ast(1 + k\ast x)$$
130+
$$
131+
c_{1}\ast s_{2}\ast(1 + k\ast y) = c_{2}\ast s_{1}\ast(1 + k\ast x)
132+
$$
111133

112134
113135

114-
$$1 + k\ast y = \frac{c_{2}\ast s_{1}}{c_{1}\ast s_{2}}\ast(1 + k\ast x)$$
136+
$$
137+
1 + k\ast y = \frac{c_{2}\ast s_{1}}{c_{1}\ast s_{2}}\ast(1 + k\ast x)
138+
$$
115139

116140
117141

118-
$$y = \frac{c_{2}\ast s_{1} + k\ast x\ast c_{2}\ast s_{1} - c_{1}\ast s_{2}}{k\ast c_{1}\ast s_{2}}$$
142+
$$
143+
y = \frac{c_{2}\ast s_{1} + k\ast x\ast c_{2}\ast s_{1} - c_{1}\ast s_{2}}{k\ast c_{1}\ast s_{2}}
144+
$$
119145

120146
121147

122-
$$y\ast s_{2} = \frac{c_{2}\ast s_{1}\ast s_{2} + k\ast x\ast c_{2}\ast s_{1}\ast s_{2} - c_{1}\ast s_{2}\ast s_{2}}{k\ast c_{1}\ast s_{2}}$$
148+
$$
149+
y\ast s_{2} = \frac{c_{2}\ast s_{1}\ast s_{2} + k\ast x\ast c_{2}\ast s_{1}\ast s_{2} - c_{1}\ast s_{2}\ast s_{2}}{k\ast c_{1}\ast s_{2}}
150+
$$
123151

124152
125153

126-
$$y\ast s_{2} = \frac{c_{2}\ast s_{1}}{k\ast c_{1}} + \frac{x\ast c_{2}\ast s_{1}}{c_{1}} - \frac{s_{2}}{k}$$
154+
$$
155+
y\ast s_{2} = \frac{c_{2}\ast s_{1}}{k\ast c_{1}} + \frac{x\ast c_{2}\ast s_{1}}{c_{1}} - \frac{s_{2}}{k}
156+
$$
127157

128158
129159

130-
$$y\ast s_{2} = \frac{c_{2}}{c_{1}}\ast x\ast s_{1} + \frac{1}{k}\ast\frac{c_{2}\ast s_{1} - c_{1}\ast s_{2}}{c_{1}}$$
160+
$$
161+
y\ast s_{2} = \frac{c_{2}}{c_{1}}\ast x\ast s_{1} + \frac{1}{k}\ast\frac{c_{2}\ast s_{1} - c_{1}\ast s_{2}}{c_{1}}
162+
$$
131163

132164
133165

134-
$$y\ast s_{2} = \frac{c_{2}}{c_{1}}\ast x\ast s_{1} + 500\ast\frac{c_{2}\ast s_{1} - c_{1}\ast s_{2}}{c_{1}}$$
166+
$$
167+
y\ast s_{2} = \frac{c_{2}}{c_{1}}\ast x\ast s_{1} + 500\ast\frac{c_{2}\ast s_{1} - c_{1}\ast s_{2}}{c_{1}}
168+
$$
135169

136170
Repeating the above steps, we have:
137171

138-
$$z\ast s_{3} = \frac{c_{3}}{c_{1}}\ast x\ast s_{1} + 500\ast\frac{c_{3}\ast s_{1} - c_{1}\ast s_{3}}{c_{1}}$$
172+
$$
173+
z\ast s_{3} = \frac{c_{3}}{c_{1}}\ast x\ast s_{1} + 500\ast\frac{c_{3}\ast s_{1} - c_{1}\ast s_{3}}{c_{1}}
174+
$$
139175

140-
$$w\ast s_{4} = \frac{c_{4}}{c_{1}}\ast x\ast s_{1} + 500\ast\frac{c_{4}\ast s_{1} - c_{1}\ast s_{4}}{c_{1}}$$
176+
$$
177+
w\ast s_{4} = \frac{c_{4}}{c_{1}}\ast x\ast s_{1} + 500\ast\frac{c_{4}\ast s_{1} - c_{1}\ast s_{4}}{c_{1}}
178+
$$
141179

142180
Substituting into the constraint function:
143181

144-
$$x\ast s_{1} + y\ast s_{2} + z\ast s_{3} + w\ast s_{4} = S$$
182+
$$
183+
x\ast s_{1} + y\ast s_{2} + z\ast s_{3} + w\ast s_{4} = S
184+
$$
145185

146186
147187

148-
$$x\ast s_{1} + \frac{c_{2}}{c_{1}}\ast x\ast s_{1} + 500\ast\frac{c_{2}\ast s_{1} - c_{1}\ast s_{2}}{c_{1}} + \frac{c_{3}}{c_{1}}\ast x\ast s_{1} + 500\ast\frac{c_{3}\ast s_{1} - c_{1}\ast s_{3}}{c_{1}} + \frac{c_{4}}{c_{1}}\ast x\ast s_{1} + 500\ast\frac{c_{4}\ast s_{1} - c_{1}\ast s_{4}}{c_{1}} = S$$
188+
$$
189+
x\ast s_{1} + \frac{c_{2}}{c_{1}}\ast x\ast s_{1} + 500\ast\frac{c_{2}\ast s_{1} - c_{1}\ast s_{2}}{c_{1}} + \frac{c_{3}}{c_{1}}\ast x\ast s_{1} + 500\ast\frac{c_{3}\ast s_{1} - c_{1}\ast s_{3}}{c_{1}} + \frac{c_{4}}{c_{1}}\ast x\ast s_{1} + 500\ast\frac{c_{4}\ast s_{1} - c_{1}\ast s_{4}}{c_{1}} = S
190+
$$
149191

150192
151193

152-
$$\frac{x\ast s_{1}\ast\left( c_{1} + c_{2} + c_{3} + c_{4} \right)}{c_{1}} + \frac{500}{c_{1}}\ast\left( c_{2}\ast s_{1} - c_{1}\ast s_{2} + c_{3}\ast s_{1} - c_{1}\ast s_{3} + c_{4}\ast s_{1} - c_{1}\ast s_{4} \right) = S$$
194+
$$
195+
\frac{x\ast s_{1}\ast\left( c_{1} + c_{2} + c_{3} + c_{4} \right)}{c_{1}} + \frac{500}{c_{1}}\ast\left( c_{2}\ast s_{1} - c_{1}\ast s_{2} + c_{3}\ast s_{1} - c_{1}\ast s_{3} + c_{4}\ast s_{1} - c_{1}\ast s_{4} \right) = S
196+
$$
153197

154198
155199

156-
$$\frac{x\ast s_{1}\ast\left( c_{1} + c_{2} + c_{3} + c_{4} \right)}{c_{1}} + \frac{500}{c_{1}}\ast\left( s_{1}\ast\left( c_{2} + c_{3} + c_{4}\ \right) - c_{1}\ast\left( s_{2} + s_{3} + s_{4} \right) \right) = S$$
200+
$$
201+
\frac{x\ast s_{1}\ast\left( c_{1} + c_{2} + c_{3} + c_{4} \right)}{c_{1}} + \frac{500}{c_{1}}\ast\left( s_{1}\ast\left( c_{2} + c_{3} + c_{4}\ \right) - c_{1}\ast\left( s_{2} + s_{3} + s_{4} \right) \right) = S
202+
$$
157203

158204
159205

160-
$$x\ast s_{1}\ast\frac{c_{1} + c_{2} + c_{3} + c_{4}}{c_{1}} + \frac{500}{c_{1}}\ast\left( s_{1}\ast\left( c_{2} + c_{3} + c_{4}\ \right) - c_{1}\ast\left( s_{2} + s_{3} + s_{4} \right) \right) = S$$
206+
$$
207+
x\ast s_{1}\ast\frac{c_{1} + c_{2} + c_{3} + c_{4}}{c_{1}} + \frac{500}{c_{1}}\ast\left( s_{1}\ast\left( c_{2} + c_{3} + c_{4}\ \right) - c_{1}\ast\left( s_{2} + s_{3} + s_{4} \right) \right) = S
208+
$$
161209

162210
163211

164-
$$x\ast s_{1} = \frac{S - 500\ast\left( \frac{s_{1}}{c_{1}}\ast\left( c_{2} + c_{3} + c_{4} \right) - \left( s_{2} + s_{3} + s_{4} \right) \right)}{\frac{c_{1} + c_{2} + c_{3} + c_{4}}{c_{1}}}$$
212+
$$
213+
x\ast s_{1} = \frac{S - 500\ast\left( \frac{s_{1}}{c_{1}}\ast\left( c_{2} + c_{3} + c_{4} \right) - \left( s_{2} + s_{3} + s_{4} \right) \right)}{\frac{c_{1} + c_{2} + c_{3} + c_{4}}{c_{1}}}
214+
$$
165215

166216
We can do the same steps for y,z,w.
167217

src/Documentation/doc/en/advanced/corporation/demand-competition.md

Lines changed: 3 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -40,7 +40,9 @@ During the START state, the game decreases `demand` and increases `competition`
4040

4141
- Amount of change:
4242

43-
$$AmountOfChange = Random(0,3)*0.0004$$
43+
$$
44+
AmountOfChange = Random(0,3)*0.0004
45+
$$
4446

4547
- This amount is multiplied by 3 if the industry is Pharmaceutical, Software or Robotics.
4648

src/Documentation/doc/en/advanced/corporation/financial-statement.md

Lines changed: 54 additions & 17 deletions
Original file line numberDiff line numberDiff line change
@@ -33,7 +33,9 @@ Cycle's valuation:
3333

3434
- AssetDelta:
3535

36-
$$AssetDelta = \frac{TotalAssets - PreviousTotalAssets}{10}$$
36+
$$
37+
AssetDelta = \frac{TotalAssets - PreviousTotalAssets}{10}
38+
$$
3739

3840
- Pre-IPO:
3941
- If `AssetDelta` is greater than 0, it's used for calculating valuation.
@@ -45,7 +47,9 @@ $$AssetDelta = \frac{TotalAssets - PreviousTotalAssets}{10}$$
4547
$$AssetDelta = AssetDelta\ast(1 - DividendRate)$$
4648
- Formula:
4749

48-
$$Valuation = (Funds + AssetDelta\ast 85000)\ast\left(\sqrt[12]{1.1}\right)^{NumberOfOfficesAndWarehouses}$$
50+
$$
51+
Valuation = (Funds + AssetDelta\ast 85000)\ast\left(\sqrt[12]{1.1}\right)^{NumberOfOfficesAndWarehouses}
52+
$$
4953

5054
- Minimum value of valuation is $10^{10}$.
5155
- Valuation is multiplied by `CorporationValuation`. Many BitNodes cripple Corporation via this multiplier.
@@ -65,7 +69,9 @@ Each round has its own `FundingRoundShares` and `FundingRoundMultiplier`.
6569

6670
Formula:
6771

68-
$$Offer = CorporationValuation\ast FundingRoundShares\ast FundingRoundMultiplier$$
72+
$$
73+
Offer = CorporationValuation\ast FundingRoundShares\ast FundingRoundMultiplier
74+
$$
6975

7076
Analyses:
7177

@@ -79,21 +85,29 @@ Analyses:
7985

8086
Your dividend is negatively affected by a penalty modifier called `TributeModifier`. `TributeModifier` depends on `CorporationSoftcap`. In BN3, `CorporationSoftcap` is 1.
8187

82-
$$TributeModifier = 1.15 - CorporationSoftcap$$
88+
$$
89+
TributeModifier = 1.15 - CorporationSoftcap
90+
$$
8391

8492
`ShadyAccounting` reduces `TributeModifier` by 0.05.
8593

8694
`GovernmentPartnership` reduces `TributeModifier` by 0.1.
8795

8896
Formula:
8997

90-
$$TotalDividends = DividendRate\ast(Revenue - Expenses)\ast 10$$
98+
$$
99+
TotalDividends = DividendRate\ast(Revenue - Expenses)\ast 10
100+
$$
91101

92-
$$Dividend = \left(OwnedShares\ast\frac{TotalDividends}{TotalShares}\right)^{1 - TributeModifier}$$
102+
$$
103+
Dividend = \left(OwnedShares\ast\frac{TotalDividends}{TotalShares}\right)^{1 - TributeModifier}
104+
$$
93105

94106
Retained earning:
95107

96-
$$RetainedEarning = (1 - DividendRate)\ast(Revenue - Expenses)\ast 10$$
108+
$$
109+
RetainedEarning = (1 - DividendRate)\ast(Revenue - Expenses)\ast 10
110+
$$
97111

98112
Dividend is added to player's money. Retained earning is added to corporation's funds. This means if we increase `DividendRate`, corporation's valuation is dwindled.
99113

@@ -117,15 +131,21 @@ If your corporation is self-funded and you sell CEO position, you only need 50b
117131

118132
`TargetSharePrice`:
119133

120-
$$OwnershipPercentage = \frac{OwnedShares}{TotalShares}$$
134+
$$
135+
OwnershipPercentage = \frac{OwnedShares}{TotalShares}
136+
$$
121137

122-
$$TargetSharePrice = \frac{CorporationValuation*\left(0.5+\sqrt{OwnershipPercentage}\right)}{TotalShares}$$
138+
$$
139+
TargetSharePrice = \frac{CorporationValuation*\left(0.5+\sqrt{OwnershipPercentage}\right)}{TotalShares}
140+
$$
123141

124142
When corporation goes public, the initial share price is `TargetSharePrice`.
125143

126144
Share price is updated in START state.
127145

128-
$$SharePrice = \begin{cases} SharePrice\ast(1 + Math.random()\ast 0.01), & SharePrice \leq TargetSharePrice \newline SharePrice\ast(1 - Math.random()\ast 0.01), & SharePrice > TargetSharePrice\end{cases}$$
146+
$$
147+
SharePrice = \begin{cases} SharePrice\ast(1 + Math.random()\ast 0.01), & SharePrice \leq TargetSharePrice \newline SharePrice\ast(1 - Math.random()\ast 0.01), & SharePrice > TargetSharePrice\end{cases}
148+
$$
129149

130150
Minimum share price is 0.01.
131151

@@ -135,17 +155,28 @@ Issue new shares:
135155
- The number of new shares issued must be a multiple of 10 million.
136156
- New share price:
137157

138-
$$NewOwnershipPercentage = \frac{OwnedShares}{TotalShares+NewShares}$$
158+
$$
159+
NewOwnershipPercentage = \frac{OwnedShares}{TotalShares+NewShares}
160+
$$
139161

140-
$$NewSharePrice = \frac{CorporationValuation\ast\left(0.5+\sqrt{NewOwnershipPercentage}\right)}{TotalShares}$$
162+
$$
163+
NewSharePrice = \frac{CorporationValuation\ast\left(0.5+\sqrt{NewOwnershipPercentage}\right)}{TotalShares}
164+
$$
141165

142166
- Profit:
143167

144-
$$Profit = {NewShares\ast(SharePrice + NewSharePrice)}\ast{0.5}$$
168+
$$
169+
Profit = {NewShares\ast(SharePrice + NewSharePrice)}\ast{0.5}
170+
$$
145171

146172
- Profit is added to corporation's funds.
147173
- `DefaultCooldown` is 4 hours.
148-
- Cooldown: $$Cooldown = DefaultCooldown\ast\frac{TotalShares}{10^{9}}$$
174+
- Cooldown:
175+
176+
$$
177+
Cooldown = DefaultCooldown\ast\frac{TotalShares}{10^{9}}
178+
$$
179+
149180
- Part of the new shares are added to `InvestorShares`. The remaining ones are added to `IssuedShares`.
150181
- `MaxPrivateShares`:
151182
$$MaxPrivateShares = {NewShares}\ast{0.5}\ast\frac{InvestorShares}{TotalShares}$$
@@ -174,8 +205,14 @@ Sold/bought back shares are processed in multiple "iterations".
174205
- Number of shares processed each iteration is shareSalesUntilPriceUpdate. Default value is $10^6$.
175206
- Share price is recalculated each iteration.
176207

177-
$$OwnershipPercentage = \frac{OwnedShares - ProcessedShares}{TotalShares}$$
208+
$$
209+
OwnershipPercentage = \frac{OwnedShares - ProcessedShares}{TotalShares}
210+
$$
178211

179-
$$TargetSharePrice = \frac{CorporationValuation\ast\left(0.5 + \sqrt{OwnershipPercentage}\right)}{TotalShares}$$
212+
$$
213+
TargetSharePrice = \frac{CorporationValuation\ast\left(0.5 + \sqrt{OwnershipPercentage}\right)}{TotalShares}
214+
$$
180215

181-
$$SharePrice = \begin{cases} SharePrice\ast 1.005, SharePrice \leq TargetSharePrice \newline SharePrice\ast 0.995, SharePrice > TargetSharePrice\end{cases}$$
216+
$$
217+
SharePrice = \begin{cases} SharePrice\ast 1.005, SharePrice \leq TargetSharePrice \newline SharePrice\ast 0.995, SharePrice > TargetSharePrice\end{cases}
218+
$$

src/Documentation/doc/en/advanced/corporation/miscellany.md

Lines changed: 3 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -48,7 +48,9 @@ The optimal export string is `(IPROD+IINV/10)*(-1)`. For example: export "Chemic
4848
- IINV = 700
4949
- "Export" is expressed by number of units per second, so we want to export:
5050

51-
$$\left(100-\frac{700}{10}\right)=\left(-100+\frac{700}{10}\right)\ast(-1)=\left(IPROD+\frac{IINV}{10}\right)\ast(-1)$$
51+
$$
52+
\left(100-\frac{700}{10}\right)=\left(-100+\frac{700}{10}\right)\ast(-1)=\left(IPROD+\frac{IINV}{10}\right)\ast(-1)
53+
$$
5254

5355
Export route is FIFO. You can remove an export route by using `cancelExportMaterial` NS API.
5456

0 commit comments

Comments
 (0)