forked from Pyomo/mpi-sppy
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_all.py
442 lines (390 loc) · 19 KB
/
run_all.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
###############################################################################
# mpi-sppy: MPI-based Stochastic Programming in PYthon
#
# Copyright (c) 2024, Lawrence Livermore National Security, LLC, Alliance for
# Sustainable Energy, LLC, The Regents of the University of California, et al.
# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md for
# full copyright and license information.
###############################################################################
# Run a lot of examples for regression testing; dlw May 2020
# Not intended to be user-friendly.
# Assumes you run from the examples directory.
# Optional command line arguments: solver_name mpiexec_arg nouc
# E.g. python run_all.py
# python run_all.py cplex
# python run_all.py gurobi_persistent --oversubscribe
# python run_all.py gurobi_persistent -envall nouc
# (envall does nothing; it is just a place-holder)
import os
import sys
import pandas as pd
from datetime import datetime as dt
solver_name = "gurobi_persistent"
if len(sys.argv) > 1:
solver_name = sys.argv[1]
# Use oversubscribe if your computer does not have enough cores.
# Don't use this unless you have to.
# (This may not be allowed on some versions of mpiexec)
mpiexec_arg = "" # "--oversubscribe" or "-envall"
if len(sys.argv) > 2:
mpiexec_arg = sys.argv[2]
# set nouc for testing with community solvers
nouc = False
if len(sys.argv) > 3:
nouc = True
if sys.argv[3] != "nouc":
raise RuntimeError("Third arg can only be nouc (you have {})".\
format(sys.argv[3]))
badguys = dict()
def egret_avail():
try:
import egret
except Exception:
return False
path = str(egret.__path__)
left = path.find("'")
right = path.find("'", left+1)
egretrootpath = path[left+1:right]
egret_thirdparty_path = os.path.join(egretrootpath, "thirdparty")
if os.path.exists(os.path.join(egret_thirdparty_path, "pglib-opf-master")):
return True
from egret.thirdparty.get_pglib_opf import get_pglib_opf
get_pglib_opf(egret_thirdparty_path)
return True
def do_one(dirname, progname, np, argstring):
""" return the code"""
os.chdir(dirname)
runstring = "mpiexec {} -np {} python -u -m mpi4py {} {}".\
format(mpiexec_arg, np, progname, argstring)
# The top process output seems to be cached by github actions
# so we need oputput in the system call to help debug
code = os.system("echo {} && {}".format(runstring, runstring))
if code != 0:
if dirname not in badguys:
badguys[dirname] = [runstring]
else:
badguys[dirname].append(runstring)
if '/' not in dirname:
os.chdir("..")
else:
os.chdir("../..") # hack for one level of subdirectories
return code
def time_one(ID, dirname, progname, np, argstring):
""" same as do_one, but also check the running time.
ID must be unique and ID.perf.csv will be(come) a local file name
and should be allowed to sit on your machine in your examples directory.
Do not record a time for a bad guy."""
if ID in time_one.ID_check:
raise RuntimeError(f"Duplicate time_one ID={ID}")
else:
time_one.ID_check.append(ID)
listfname = ID+".perf.csv"
start = dt.now()
code = do_one(dirname, progname, np, argstring)
finish = dt.now()
runsecs = (finish-start).total_seconds()
if code != 0:
return # Nothing to see here, folks.
# get a reference time
start = dt.now()
for i in range(int(1e7)): # don't change this unless you *really* have to
if (i % 2) == 0:
foo = i * i
bar = str(i)+"!"
del foo
del bar
finish = dt.now()
refsecs = (finish-start).total_seconds()
if os.path.isfile(listfname):
timelistdf = pd.read_csv(listfname)
timelistdf.loc[len(timelistdf.index)] = [str(finish), refsecs, runsecs]
else:
print(f"{listfname} will be created.")
timelistdf = pd.DataFrame([[finish, refsecs, runsecs]],
columns=["datetime", "reftime", "time"])
# Quick look for trouble
if len(timelistdf) > 0:
thisscaled = runsecs / refsecs
lastrow = timelistdf.iloc[-1]
lastrefsecs = lastrow["reftime"]
lastrunsecs = lastrow["time"]
lastscaled = lastrunsecs / lastrefsecs
deltafrac = (thisscaled - lastscaled) / lastscaled
if deltafrac > 0.1:
print(f"**** WARNING: {100*deltafrac}% time increase for {ID}, see {listfname}")
timelistdf.to_csv(listfname, index=False)
time_one.ID_check = list()
def do_one_mmw(dirname, runefstring, npyfile, mmwargstring):
# assume that the dirname matches the module name
os.chdir(dirname)
# solve ef, save .npy file (file name hardcoded in progname at the moment)
code = os.system("echo {} && {}".format(runefstring, runefstring))
if code!=0:
if dirname not in badguys:
badguys[dirname] = [runefstring]
else:
badguys[dirname].append(runefstring)
# run mmw, remove .npy file
else:
runstring = "python -m mpisppy.confidence_intervals.mmw_conf {} --xhatpath {} {}".\
format(dirname, npyfile, mmwargstring)
code = os.system("echo {} && {}".format(runstring, runstring))
if code != 0:
if dirname not in badguys:
badguys[dirname] = [runstring]
else:
badguys[dirname].append(runstring)
os.remove(npyfile)
os.chdir("..")
do_one("farmer", "farmer_ef.py", 1,
"1 3 {}".format(solver_name))
# for farmer_cylinders, the first arg is num_scens and is required
do_one("farmer", "farmer_cylinders.py", 3,
"--num-scens 3 --bundles-per-rank=0 --max-iterations=50 --default-rho=1 --solver-name={} "
"--primal-dual-converger --primal-dual-converger-tol=0.5 --lagrangian --xhatshuffle "
"--intra-hub-conv-thresh -0.1 --rel-gap=1e-6".format(solver_name))
do_one("farmer", "farmer_cylinders.py", 5,
"--num-scens 3 --bundles-per-rank=0 --max-iterations=50 --default-rho=1 --solver-name={} "
"--use-norm-rho-converger --use-norm-rho-updater --rel-gap=1e-6 --lagrangian --lagranger "
"--xhatshuffle --fwph --W-fname=out_ws.txt --Xbar-fname=out_xbars.txt "
"--ph-track-progress --track-convergence=4 --track-xbar=4 --track-nonants=4 "
"--track-duals=4".format(solver_name))
do_one("farmer", "farmer_cylinders.py", 5,
"--num-scens 3 --bundles-per-rank=0 --max-iterations=50 --default-rho=1 --solver-name={} "
"--use-norm-rho-converger --use-norm-rho-updater --lagrangian --lagranger --xhatshuffle --fwph "
"--init-W-fname=out_ws.txt --init-Xbar-fname=out_xbars.txt --ph-track-progress --track-convergence=4 " "--track-xbar=4 --track-nonants=4 --track-duals=4 ".format(solver_name))
do_one("farmer", "farmer_lshapedhub.py", 2,
"--num-scens 3 --bundles-per-rank=0 --max-iterations=50 "
"--solver-name={} --rel-gap=0.0 "
"--xhatlshaped --max-solver-threads=1".format(solver_name))
do_one("farmer", "farmer_cylinders.py", 3,
"--num-scens 3 --bundles-per-rank=0 --max-iterations=50 "
"--default-rho=1 "
"--solver-name={} --lagranger --xhatlooper".format(solver_name))
do_one("farmer", "farmer_cylinders.py", 3,
"--num-scens 6 --bundles-per-rank=2 --max-iterations=50 "
"--default-rho=1 --lagrangian --xhatshuffle "
"--solver-name={}".format(solver_name))
do_one("farmer", "farmer_cylinders.py", 4,
"--num-scens 6 --bundles-per-rank=2 --max-iterations=50 "
"--fwph-stop-check-tol 0.1 "
"--default-rho=1 --solver-name={} --lagrangian --xhatshuffle --fwph".format(solver_name))
do_one("farmer", "farmer_cylinders.py", 2,
"--num-scens 6 --bundles-per-rank=2 --max-iterations=50 "
"--default-rho=1 "
"--solver-name={} --xhatshuffle".format(solver_name))
do_one("farmer", "farmer_cylinders.py", 3,
"--num-scens 3 --bundles-per-rank=0 --max-iterations=1 "
"--default-rho=1 --tee-rank0-solves "
"--solver-name={} --lagrangian --xhatshuffle".format(solver_name))
time_one("FarmerLinProx", "farmer", "farmer_cylinders.py", 3,
"--num-scens 3 --default-rho=1.0 --max-iterations=50 "
"--display-progress --rel-gap=0.0 --abs-gap=0.0 "
"--linearize-proximal-terms --proximal-linearization-tolerance=1.e-6 "
"--solver-name={} --lagrangian --xhatshuffle".format(solver_name))
do_one("farmer/from_pysp", "concrete_ampl.py", 1, solver_name)
do_one("farmer/from_pysp", "abstract.py", 1, solver_name)
do_one("farmer",
"farmer_cylinders.py",
2,
f"--num-scens 3 --max-iterations=10 --default-rho=1.0 --display-progress --bundles-per-rank=0 --xhatshuffle --aph-gamma=1.0 --aph-nu=1.0 --aph-frac-needed=1.0 --aph-dispatch-frac=1.0 --abs-gap=1 --aph-sleep-seconds=0.01 --run-async --solver-name={solver_name}")
do_one("farmer",
"farmer_cylinders.py",
2,
f"--num-scens 3 --max-iterations=10 --default-rho=1.0 --display-progress --bundles-per-rank=0 --xhatlooper --aph-gamma=1.0 --aph-nu=1.0 --aph-frac-needed=1.0 --aph-dispatch-frac=0.25 --abs-gap=1 --display-convergence-detail --aph-sleep-seconds=0.01 --run-async --solver-name={solver_name}")
do_one("farmer",
"farmer_cylinders.py",
2,
f"--num-scens 30 --max-iterations=10 --default-rho=1.0 --display-progress --bundles-per-rank=0 --xhatlooper --aph-gamma=1.0 --aph-nu=1.0 --aph-frac-needed=1.0 --aph-dispatch-frac=1 --abs-gap=1 --aph-sleep-seconds=0.01 --run-async --bundles-per-rank=5 --solver-name={solver_name}")
do_one("farmer",
"farmer_cylinders.py", 4,
f"--num-scens 3 --bundles-per-rank=0 --max-iterations=50 --default-rho=1 --solver-name={solver_name} --lagrangian --xhatshuffle --fwph --max-stalled-iters 1")
do_one("farmer",
"farmer_cylinders.py",
2,
f"--num-scens 30 --max-iterations=10 --default-rho=1.0 --display-progress --bundles-per-rank=0 --xhatshuffle --aph-gamma=1.0 --aph-nu=1.0 --aph-frac-needed=1.0 --aph-dispatch-frac=0.5 --abs-gap=1 --aph-sleep-seconds=0.01 --run-async --bundles-per-rank=5 --solver-name={solver_name}")
do_one("farmer",
"farmer_ama.py",
3,
f"--num-scens=10 --crops-multiplier=3 --farmer-with-integer --EF-solver-name={solver_name}")
do_one("farmer",
"farmer_seqsampling.py",
1,
f"--num-scens 3 --crops-multiplier=1 --EF-solver-name={solver_name} "
"--BM-h 2 --BM-q 1.3 --confidence-level 0.95 --BM-vs-BPL BM")
do_one("farmer",
"farmer_seqsampling.py",
1,
f"--num-scens 3 --crops-multiplier=1 --EF-solver-name={solver_name} "
"--BPL-c0 25 --BPL-eps 100 --confidence-level 0.95 --BM-vs-BPL BPL")
do_one("netdes", "netdes_cylinders.py", 4,
"--max-iterations=3 --instance-name=network-10-20-L-01 "
"--solver-name={} --rel-gap=0.0 --default-rho=10000 --presolve "
"--slammax --SUBGRAD --xhatshuffle --cross-scenario-cuts --max-solver-threads=2".format(solver_name))
# sizes is slow for xpress so try linearizing the proximal term.
do_one("sizes",
"sizes_cylinders.py",
3,
"--linearize-proximal-terms "
"--num-scens=10 --bundles-per-rank=0 --max-iterations=5 "
"--default-rho=1 --lagrangian --xhatshuffle "
"--iter0-mipgap=0.01 --iterk-mipgap=0.001 "
"--solver-name={}".format(solver_name))
do_one("sizes",
"sizes_cylinders.py",
3,
"--linearize-proximal-terms "
"--num-scens=10 --bundles-per-rank=0 --max-iterations=5 "
"--default-rho=1 --lagrangian --xhatxbar "
"--iter0-mipgap=0.01 --iterk-mipgap=0.001 "
"--solver-name={}".format(solver_name))
do_one("sizes", "sizes_pysp.py", 1, "3 {}".format(solver_name))
do_one("sslp",
"sslp_cylinders.py",
4,
"--instance-name=sslp_15_45_10 --bundles-per-rank=0 "
"--integer-relax-then-enforce "
"--integer-relax-then-enforce-ratio=0.95 "
"--lagrangian "
"--max-iterations=100 --default-rho=1 "
"--reduced-costs --rc-fixer --xhatshuffle "
"--linearize-proximal-terms "
"--rel-gap=0.0 "
"--solver-name={}".format(solver_name))
do_one("hydro", "hydro_cylinders.py", 3,
"--branching-factors \"3 3\" --bundles-per-rank=0 --max-iterations=100 "
"--default-rho=1 --xhatshuffle --lagrangian "
"--solver-name={}".format(solver_name))
do_one("hydro", "hydro_cylinders.py", 3,
"--branching-factors \'3 3\' --bundles-per-rank=0 --max-iterations=100 "
"--default-rho=1 --xhatshuffle --lagrangian "
"--solver-name={} --stage2EFsolvern={}".format(solver_name, solver_name))
do_one("hydro", "hydro_cylinders_pysp.py", 3,
"--bundles-per-rank=0 --max-iterations=100 "
"--default-rho=1 --xhatshuffle --lagrangian "
"--solver-name={}".format(solver_name))
do_one("hydro", "hydro_ef.py", 1, solver_name)
# the next might hang with 6 ranks
do_one("aircond", "aircond_cylinders.py", 3,
"--branching-factors \'4 3 2\' --bundles-per-rank=0 --max-iterations=100 "
"--default-rho=1 --lagrangian --xhatshuffle "
"--solver-name={}".format(solver_name))
do_one("aircond", "aircond_ama.py", 3,
"--branching-factors \'3 3\' --bundles-per-rank=0 --max-iterations=100 "
"--default-rho=1 --lagrangian --xhatshuffle "
"--solver-name={}".format(solver_name))
time_one("AircondAMA", "aircond", "aircond_ama.py", 3,
"--branching-factors \'3 3\' --bundles-per-rank=0 --max-iterations=100 "
"--default-rho=1 --lagrangian --xhatshuffle "
"--solver-name={}".format(solver_name))
do_one("aircond",
"aircond_seqsampling.py",
1,
f"--branching-factors \'3 2\' --seed 1134 --solver-name={solver_name} "
"--BM-h 2 --BM-q 1.3 --confidence-level 0.95 --BM-vs-BPL BM")
do_one("aircond",
"aircond_seqsampling.py",
1,
f"--branching-factors \'3 2\' --seed 1134 --solver-name={solver_name} "
"--BPL-c0 25 --BPL-eps 100 --confidence-level 0.95 --BM-vs-BPL BPL")
#=========MMW TESTS==========
# do_one_mmw is special
do_one_mmw("farmer", f"python farmer_ef.py 3 3 {solver_name}", "farmer_cyl_nonants.npy", f"--MMW-num-batches=5 --confidence-level 0.95 --MMW-batch-size=10 --start-scen 4 --EF-solver-name={solver_name}")
#============================
# sizes kills the github tests using xpress
# so we use linearized proximal terms
if not nouc:
# put a few slow runs and/or runs that are trouble on github in the uc group
do_one("sslp",
"sslp_cylinders.py",
4,
"--instance-name=sslp_15_45_10 --bundles-per-rank=2 "
"--max-iterations=5 --default-rho=1 "
"--subgradient --xhatshuffle --fwph --coeff-rho "
"--linearize-proximal-terms "
"--rel-gap=0.0 "
"--solver-name={} --fwph-stop-check-tol 0.01".format(solver_name))
do_one("sizes",
"special_cylinders.py",
3,
"--lagrangian --xhatshuffle "
"--num-scens=3 --bundles-per-rank=0 --max-iterations=5 "
"--iter0-mipgap=0.01 --iterk-mipgap=0.001 --linearize-proximal-terms "
"--default-rho=1 --solver-name={} --display-progress".format(solver_name))
do_one("sizes",
"sizes_cylinders.py",
4,
"--num-scens=3 --bundles-per-rank=0 --max-iterations=5 "
"--iter0-mipgap=0.01 --iterk-mipgap=0.005 "
"--default-rho=1 --lagrangian --xhatshuffle --fwph "
"--solver-name={} --display-progress".format(solver_name))
if egret_avail():
print("\nSlow runs ahead...\n")
do_one("acopf3", "ccopf2wood.py", 2, f"2 3 2 0 {solver_name}")
do_one("acopf3", "fourstage.py", 4, f"2 2 2 1 0 {solver_name}")
# 3-scenario UC
do_one("uc", "uc_ef.py", 1, solver_name+" 3")
do_one("uc", "gradient_uc_cylinders.py", 15,
"--bundles-per-rank=0 --max-iterations=100 --default-rho=1 "
"--xhatshuffle --ph-ob --num-scens=5 --max-solver-threads=2 "
"--lagrangian-iter0-mipgap=1e-7 --ph-mipgaps-json=phmipgaps.json "
f"--solver-name={solver_name} --xhatpath uc_cyl_nonants.npy "
"--rel-gap 0.00001 --abs-gap=1 --intra-hub-conv-thresh=-1 "
"--grad-rho-setter --grad-order-stat 0.5 "
"--grad-dynamic-primal-crit")
do_one("uc", "uc_cylinders.py", 4,
"--bundles-per-rank=0 --max-iterations=2 "
"--default-rho=1 --num-scens=3 --max-solver-threads=2 "
"--lagrangian-iter0-mipgap=1e-7 --fwph "
" --lagrangian --xhatshuffle "
"--ph-mipgaps-json=phmipgaps.json "
"--solver-name={}".format(solver_name))
do_one("uc", "uc_lshaped.py", 2,
"--bundles-per-rank=0 --max-iterations=5 "
"--default-rho=1 --num-scens=3 --xhatlshaped "
"--solver-name={} --max-solver-threads=1".format(solver_name))
do_one("uc", "uc_cylinders.py", 3,
"--run-aph --bundles-per-rank=0 --max-iterations=2 "
"--default-rho=1 --num-scens=3 --max-solver-threads=2 "
"--lagrangian-iter0-mipgap=1e-7 --lagrangian --xhatshuffle "
"--ph-mipgaps-json=phmipgaps.json "
"--solver-name={}".format(solver_name))
# as of May 2022, this one works well, but outputs some crazy messages
do_one("uc", "uc_ama.py", 3,
"--bundles-per-rank=0 --max-iterations=2 "
"--default-rho=1 --num-scens=3 "
"--fixer-tol=1e-2 --lagranger --xhatshuffle "
"--solver-name={}".format(solver_name))
# 10-scenario UC
time_one("UC_cylinder10scen", "uc", "uc_cylinders.py", 3,
"--bundles-per-rank=5 --max-iterations=2 "
"--default-rho=1 --num-scens=10 --max-solver-threads=2 "
"--lagrangian-iter0-mipgap=1e-7 "
"--ph-mipgaps-json=phmipgaps.json "
"--lagrangian --xhatshuffle "
"--solver-name={}".format(solver_name))
# note that fwph takes a long time to do one iteration
do_one("uc", "uc_cylinders.py", 4,
"--bundles-per-rank=5 --max-iterations=2 "
"--default-rho=1 --num-scens=10 --max-solver-threads=2 "
" --lagrangian --xhatshuffle --fwph "
"--lagrangian-iter0-mipgap=1e-7 "
"--ph-mipgaps-json=phmipgaps.json "
"--solver-name={}".format(solver_name))
do_one("uc", "uc_cylinders.py", 5,
"--bundles-per-rank=5 --max-iterations=2 "
"--default-rho=1 --num-scens=10 --max-solver-threads=2 "
" --lagrangian --xhatshuffle --fwph "
"--lagrangian-iter0-mipgap=1e-7 --cross-scenario-cuts "
"--ph-mipgaps-json=phmipgaps.json --cross-scenario-iter-cnt=4 "
"--solver-name={}".format(solver_name))
do_one("sizes", "sizes_demo.py", 1, " {}".format(solver_name))
if len(badguys) > 0:
print("\nBad Guys:")
for i,v in badguys.items():
print("Directory={}".format(i))
for c in v:
print(" {}".format(c))
sys.exit(1)
else:
print("\nAll OK.")