@@ -132,9 +132,9 @@ def sample_tau(n=10, kappa_3=0.3, ratio=0.5, rel_increase=0.15):
132132 return tau .tolist ()
133133
134134
135- def load_driftbif (n , l , m = 2 , classification = True , kappa_3 = 0.3 , seed = False ):
135+ def load_driftbif (n , length , m = 2 , classification = True , kappa_3 = 0.3 , seed = False ):
136136 """
137- Simulates n time-series with l time steps each for the m-dimensional velocity of a dissipative soliton
137+ Simulates n time-series with length time steps each for the m-dimensional velocity of a dissipative soliton
138138
139139 classification=True:
140140 target 0 means tau<=1/0.3, Dissipative Soliton with Brownian motion (purely noise driven)
@@ -145,8 +145,8 @@ def load_driftbif(n, l, m=2, classification=True, kappa_3=0.3, seed=False):
145145
146146 :param n: number of samples
147147 :type n: int
148- :param l : length of the time series
149- :type l : int
148+ :param length : length of the time series
149+ :type length : int
150150 :param m: number of spatial dimensions (default m=2) the dissipative soliton is propagating in
151151 :type m: int
152152 :param classification: distinguish between classification (default True) and regression target
@@ -166,8 +166,8 @@ def load_driftbif(n, l, m=2, classification=True, kappa_3=0.3, seed=False):
166166 logging .warning ("You set the dimension parameter for the dissipative soliton to m={}, however it is only"
167167 "properly defined for m=1 or m=2." .format (m ))
168168
169- id = np .repeat (range (n ), l * m )
170- dimensions = list (np .repeat (range (m ), l )) * n
169+ id = np .repeat (range (n ), length * m )
170+ dimensions = list (np .repeat (range (m ), length )) * n
171171
172172 labels = list ()
173173 values = list ()
@@ -180,8 +180,8 @@ def load_driftbif(n, l, m=2, classification=True, kappa_3=0.3, seed=False):
180180 labels .append (ds .label )
181181 else :
182182 labels .append (ds .tau )
183- values .append (ds .simulate (l , v0 = np .zeros (m )).transpose ().flatten ())
184- time = np .stack ([ds .delta_t * np .arange (l )] * n * m ).flatten ()
183+ values .append (ds .simulate (length , v0 = np .zeros (m )).transpose ().flatten ())
184+ time = np .stack ([ds .delta_t * np .arange (length )] * n * m ).flatten ()
185185
186186 df = pd .DataFrame ({'id' : id , "time" : time , "value" : np .stack (values ).flatten (), "dimension" : dimensions })
187187 y = pd .Series (labels )
0 commit comments