|
| 1 | +# This file is part of BurnMan - a thermoelastic and thermodynamic toolkit for the Earth and Planetary Sciences |
| 2 | +# Copyright (C) 2012 - 2025 by the BurnMan team, released under the GNU |
| 3 | +# GPL v2 or later. |
| 4 | + |
| 5 | + |
| 6 | +class AnharmonicDebye: |
| 7 | + """ |
| 8 | + Class providing methods to compute the anharmonic contribution to the |
| 9 | + Helmholtz free energy, pressure, entropy, isochoric heat capacity, |
| 10 | + isothermal bulk modulus and thermal expansion coefficient |
| 11 | + multiplied by the isothermal bulk modulus. |
| 12 | +
|
| 13 | + The Helmholtz energy is defined as |
| 14 | + :math:`F(V, T) = A(V) (F_a(T, \\Theta(V)) - F_a(T_0, \\Theta(V)))` |
| 15 | + where :math:`A(V)` is the anharmonic prefactor, |
| 16 | + :math:`F_a(T, \\Theta)` is the anharmonic Helmholtz energy, |
| 17 | + and :math:`\\Theta(V)` is the Debye temperature. |
| 18 | +
|
| 19 | + These three functions and their derivatives with respect to |
| 20 | + their arguments are provided as class instances contained within |
| 21 | + the params dictionary, with keys "anharmonic_prefactor_model", |
| 22 | + "debye_temperature_model", and "anharmonic_thermal_model". |
| 23 | +
|
| 24 | + :return: _description_ |
| 25 | + :rtype: _type_ |
| 26 | + """ |
| 27 | + |
| 28 | + @staticmethod |
| 29 | + def helmholtz_energy(temperature, volume, params): |
| 30 | + x = volume / params["V_0"] |
| 31 | + A = params["anharmonic_prefactor_model"].value(x, params) |
| 32 | + theta_model = params["debye_temperature_model"] |
| 33 | + anharmonic_model = params["anharmonic_thermal_model"] |
| 34 | + debye_T = theta_model(x, params) |
| 35 | + F_a = anharmonic_model.nondimensional_helmholtz_energy( |
| 36 | + temperature, debye_T, params |
| 37 | + ) |
| 38 | + F_a0 = anharmonic_model.nondimensional_helmholtz_energy( |
| 39 | + params["T_0"], debye_T, params |
| 40 | + ) |
| 41 | + return A * (F_a - F_a0) |
| 42 | + |
| 43 | + @staticmethod |
| 44 | + def entropy(temperature, volume, params): |
| 45 | + x = volume / params["V_0"] |
| 46 | + A = params["anharmonic_prefactor_model"].value(x, params) |
| 47 | + theta_model = params["debye_temperature_model"] |
| 48 | + anharmonic_model = params["anharmonic_thermal_model"] |
| 49 | + debye_T = theta_model(x, params) |
| 50 | + S_a = anharmonic_model.nondimensional_entropy(temperature, debye_T, params) |
| 51 | + return A * S_a |
| 52 | + |
| 53 | + @staticmethod |
| 54 | + def heat_capacity_v(temperature, volume, params): |
| 55 | + x = volume / params["V_0"] |
| 56 | + A = params["anharmonic_prefactor_model"].value(x, params) |
| 57 | + theta_model = params["debye_temperature_model"] |
| 58 | + anharmonic_model = params["anharmonic_thermal_model"] |
| 59 | + debye_T = theta_model(x, params) |
| 60 | + Cv_a = anharmonic_model.nondimensional_heat_capacity( |
| 61 | + temperature, debye_T, params |
| 62 | + ) |
| 63 | + return A * Cv_a |
| 64 | + |
| 65 | + @staticmethod |
| 66 | + def pressure(temperature, volume, params): |
| 67 | + x = volume / params["V_0"] |
| 68 | + A = params["anharmonic_prefactor_model"].value(x, params) |
| 69 | + dAdV = params["anharmonic_prefactor_model"].dVrel(x, params) / params["V_0"] |
| 70 | + theta_model = params["debye_temperature_model"] |
| 71 | + anharmonic_model = params["anharmonic_thermal_model"] |
| 72 | + debye_T = theta_model(x, params) |
| 73 | + F_a = anharmonic_model.nondimensional_helmholtz_energy( |
| 74 | + temperature, debye_T, params |
| 75 | + ) |
| 76 | + F_a0 = anharmonic_model.nondimensional_helmholtz_energy( |
| 77 | + params["T_0"], debye_T, params |
| 78 | + ) |
| 79 | + F_ad = anharmonic_model.nondimensional_dhelmholtz_dTheta( |
| 80 | + temperature, debye_T, params |
| 81 | + ) |
| 82 | + F_ad0 = anharmonic_model.nondimensional_dhelmholtz_dTheta( |
| 83 | + params["T_0"], debye_T, params |
| 84 | + ) |
| 85 | + return -( |
| 86 | + dAdV * (F_a - F_a0) |
| 87 | + + A * (theta_model.dVrel(x, params) / params["V_0"]) * (F_ad - F_ad0) |
| 88 | + ) |
| 89 | + |
| 90 | + @staticmethod |
| 91 | + def isothermal_bulk_modulus(temperature, volume, params): |
| 92 | + x = volume / params["V_0"] |
| 93 | + A = params["anharmonic_prefactor_model"].value(x, params) |
| 94 | + dAdV = params["anharmonic_prefactor_model"].dVrel(x, params) / params["V_0"] |
| 95 | + d2AdV2 = ( |
| 96 | + params["anharmonic_prefactor_model"].d2dVrel2(x, params) |
| 97 | + / params["V_0"] ** 2 |
| 98 | + ) |
| 99 | + theta_model = params["debye_temperature_model"] |
| 100 | + anharmonic_model = params["anharmonic_thermal_model"] |
| 101 | + debye_T = theta_model(x, params) |
| 102 | + |
| 103 | + F_a = anharmonic_model.nondimensional_helmholtz_energy( |
| 104 | + temperature, debye_T, params |
| 105 | + ) |
| 106 | + F_a0 = anharmonic_model.nondimensional_helmholtz_energy( |
| 107 | + params["T_0"], debye_T, params |
| 108 | + ) |
| 109 | + F_ad = anharmonic_model.nondimensional_dhelmholtz_dTheta( |
| 110 | + temperature, debye_T, params |
| 111 | + ) |
| 112 | + F_ad0 = anharmonic_model.nondimensional_dhelmholtz_dTheta( |
| 113 | + params["T_0"], debye_T, params |
| 114 | + ) |
| 115 | + F_add = anharmonic_model.nondimensional_d2helmholtz_dTheta2( |
| 116 | + temperature, debye_T, params |
| 117 | + ) |
| 118 | + F_add0 = anharmonic_model.nondimensional_d2helmholtz_dTheta2( |
| 119 | + params["T_0"], debye_T, params |
| 120 | + ) |
| 121 | + |
| 122 | + return volume * ( |
| 123 | + d2AdV2 * (F_a - F_a0) |
| 124 | + + 2 * dAdV * (F_ad - F_ad0) * theta_model.dVrel(x, params) / params["V_0"] |
| 125 | + + A * (F_add - F_add0) * (theta_model.dVrel(x, params) / params["V_0"]) ** 2 |
| 126 | + + A * (F_ad - F_ad0) * theta_model.d2dVrel2(x, params) / params["V_0"] ** 2 |
| 127 | + ) |
| 128 | + |
| 129 | + @staticmethod |
| 130 | + def dSdV(temperature, volume, params): |
| 131 | + x = volume / params["V_0"] |
| 132 | + A = params["anharmonic_prefactor_model"].value(x, params) |
| 133 | + dAdV = params["anharmonic_prefactor_model"].dVrel(x, params) / params["V_0"] |
| 134 | + theta_model = params["debye_temperature_model"] |
| 135 | + anharmonic_model = params["anharmonic_thermal_model"] |
| 136 | + debye_T = theta_model(x, params) |
| 137 | + |
| 138 | + S_a = anharmonic_model.nondimensional_entropy(temperature, debye_T, params) |
| 139 | + S_ad = anharmonic_model.nondimensional_dentropy_dTheta( |
| 140 | + temperature, debye_T, params |
| 141 | + ) |
| 142 | + |
| 143 | + aK_T = dAdV * S_a + A * (theta_model.dVrel(x, params) / params["V_0"]) * S_ad |
| 144 | + |
| 145 | + return aK_T |
0 commit comments