@@ -153,7 +153,7 @@ def _nondimensional_helmholtz_energy(T, debye_T):
153153 :rtype: float
154154 """
155155 t = T / debye_T
156- return _helmholtz_pade (t )
156+ return _helmholtz_pade (t ) * debye_T
157157
158158
159159@jit (nopython = True )
@@ -170,7 +170,7 @@ def _nondimensional_entropy(T, debye_T):
170170 :rtype: float
171171 """
172172 t = T / debye_T
173- return - _dhelmholtzdt_pade (t ) / debye_T
173+ return - _dhelmholtzdt_pade (t )
174174
175175
176176@jit (nopython = True )
@@ -187,7 +187,7 @@ def _nondimensional_heat_capacity(T, debye_T):
187187 :rtype: float
188188 """
189189 t = T / debye_T
190- return - t * _d2helmholtzdt2_pade (t ) / debye_T
190+ return - t * _d2helmholtzdt2_pade (t )
191191
192192
193193@jit (nopython = True )
@@ -205,7 +205,7 @@ def _nondimensional_dhelmholtz_dTheta(T, debye_T):
205205 :rtype: float
206206 """
207207 t = T / debye_T
208- return - _dhelmholtzdt_pade (t ) * t / debye_T
208+ return _helmholtz_pade ( t ) - _dhelmholtzdt_pade (t ) * t
209209
210210
211211@jit (nopython = True )
@@ -223,7 +223,7 @@ def _nondimensional_d2helmholtz_dTheta2(T, debye_T):
223223 :rtype: float
224224 """
225225 t = T / debye_T
226- return t * ( t * _d2helmholtzdt2_pade (t ) + 2.0 * _dhelmholtzdt_pade ( t )) / debye_T ** 2
226+ return t * t * _d2helmholtzdt2_pade (t ) / debye_T
227227
228228
229229@jit (nopython = True )
@@ -241,7 +241,7 @@ def _nondimensional_dentropy_dTheta(T, debye_T):
241241 :rtype: float
242242 """
243243 t = T / debye_T
244- return ( _d2helmholtzdt2_pade (t ) * t + _dhelmholtzdt_pade ( t )) / debye_T ** 2
244+ return _d2helmholtzdt2_pade (t ) * t / debye_T
245245
246246
247247class AnharmonicDebyePade :
@@ -256,17 +256,22 @@ class AnharmonicDebyePade:
256256 :math:`A = a_{anh} * (V/V_0)^{m_{anh}}`, with both :math:`a_{anh}`
257257 and :math:`m_{anh}` being parameters of the model.
258258 The term :math:`F_a` is calculated using the 3-5 Pade approximant to
259- the function: :math:`\\ int_0^x ( E_{D}/3nR) dt / x^{4}`, then
259+ the function: :math:`\\ int_0^x E_{D}(T) /3nR dT / x^{4}`, then
260260 post-multiplied by :math:`x^{4}`.
261261
262262 The :math:`E_{D}` term inside the integral is the thermal energy of a
263- Debye solid per mole of atoms. This expression is chosen because it
264- matches the behaviour of the anharmonic contribution to the entropy
265- at low and high temperatures - i.e., it is equal to zero at low temperature
266- (with all derivatives also equal to zero) and linear at high temperature.
263+ Debye solid per mole of atoms where the Debye temperature is 1 K.
264+ This expression is chosen because it matches the behaviour of the
265+ anharmonic contribution to the entropy at low and high temperatures;
266+ i.e., it is equal to zero at low temperature (with all derivatives
267+ also equal to zero) and linear at high temperature.
267268 See Figure 3 in Oganov and Dorogokupets
268269 (2004; dx.doi.org/10.1088/0953-8984/16/8/018).
269270
271+ The model is such that the entropy at the Debye temperature is equal to
272+ -A * debye.thermal_energy(T=1., debye_T=1., n=1.) / (3R), which is
273+ roughly -0.6744 J/K/mol when A = 1. Note the negative sign.
274+
270275 :return: _description_
271276 :rtype: _type_
272277 """
0 commit comments