|
| 1 | +import os |
| 2 | +import pickle |
| 3 | +import numpy as np |
| 4 | +from slam import io, geodesics, texture |
| 5 | +import networkx as nx |
| 6 | +import slam.watershed as swat |
| 7 | + |
| 8 | + |
| 9 | +def extract_sulcal_graph(side, path_to_mesh, path_to_features, path_to_output, path_to_mask=None): |
| 10 | + """ |
| 11 | + Main Function that extracts the sulcal graph from a mesh and saves it in the given directory. |
| 12 | + """ |
| 13 | + mesh = io.load_mesh(path_to_mesh) |
| 14 | + |
| 15 | + _, dpf, voronoi = swat.compute_mesh_features(mesh, save=True, outdir=path_to_features, check_if_exist=True) |
| 16 | + thresh_dist, thresh_ridge, thresh_area = swat.normalize_thresholds(mesh, voronoi, |
| 17 | + thresh_dist=20.0, |
| 18 | + thresh_ridge=1.5, |
| 19 | + thresh_area=50.0, |
| 20 | + side=side) |
| 21 | + if path_to_mask: |
| 22 | + mask = io.load_texture(path_to_mask).darray[0] |
| 23 | + else: |
| 24 | + mask = None |
| 25 | + |
| 26 | + basins, ridges, adjacency = swat.watershed(mesh, voronoi, dpf, thresh_dist, thresh_ridge, thresh_area, mask) |
| 27 | + g = get_sulcal_graph(mesh, basins, ridges, save=True, outdir=path_to_output) |
| 28 | + get_textures_from_graph(g, mesh, save=True, outdir=path_to_output) |
| 29 | + return g |
| 30 | + |
| 31 | + |
| 32 | +def get_sulcal_graph(adjacency, basins, ridges, save=True, outdir=None): |
| 33 | + """ |
| 34 | + Function that creates a graph from the outputs of the watershed. |
| 35 | +
|
| 36 | + Node attributes are: |
| 37 | + - pit_index: index of the pit |
| 38 | + - pit_depth: depth of the pit |
| 39 | + - basin_vertices: list of vertices in the basin |
| 40 | + - basin_area: area of the basin |
| 41 | + - basin_label: label of the basin |
| 42 | +
|
| 43 | + Edge attributes are: |
| 44 | + - ridge_index: index of the ridge |
| 45 | + - ridge_depth: depth of the ridge point |
| 46 | + - ridge_length: number of vertices in the ridge |
| 47 | +
|
| 48 | + """ |
| 49 | + ################################################################################################ |
| 50 | + # Initialize the graph using adjacency matrix |
| 51 | + ################################################################################################ |
| 52 | + |
| 53 | + # As the adjacency matrix concerns all created basins during watershed, it still contains merged basins that |
| 54 | + # should not appear in the graph. Thus, we first remove rows and columns corresponding to unconnected basins (only |
| 55 | + # zeros inside) |
| 56 | + labels = list(basins.keys()) |
| 57 | + adjacency = adjacency[labels, :][:, labels] |
| 58 | + # np.fill_diagonal(graph_adjacency, 1.) # apparently not necessary (visu identical) |
| 59 | + graph = nx.from_numpy_array(adjacency) # , nodelist=basins) |
| 60 | + # nodelist not adapted to attribution of labels in plotly_visu.py |
| 61 | + |
| 62 | + ################################################################################################ |
| 63 | + # Set graph attributes |
| 64 | + ################################################################################################ |
| 65 | + |
| 66 | + # Add node attributes |
| 67 | + node_attributes = {} |
| 68 | + for i, (label, values) in enumerate(basins.items()): |
| 69 | + node_attributes[i] = basins[label] # add all dictionary values |
| 70 | + node_attributes[i]['basin_label'] = label # add label value |
| 71 | + nx.set_node_attributes(graph, node_attributes) |
| 72 | + |
| 73 | + # Add edge attributes |
| 74 | + edge_attributes = {} |
| 75 | + for pair, values in ridges.items(): |
| 76 | + # Get new indices |
| 77 | + i = labels.index(pair[0]) |
| 78 | + j = labels.index(pair[1]) |
| 79 | + edge_attributes[i, j] = values # add all dictionary values |
| 80 | + nx.set_edge_attributes(graph, edge_attributes) |
| 81 | + |
| 82 | + if save: |
| 83 | + if not outdir: |
| 84 | + outdir = '' |
| 85 | + save_graph(graph, outdir) |
| 86 | + |
| 87 | + return graph |
| 88 | + |
| 89 | + |
| 90 | +def save_graph(graph, outdir): |
| 91 | + """ |
| 92 | + Save sulcal pits graph in the given directory under the name "graph.gpickle" |
| 93 | + """ |
| 94 | + file_path = os.path.join(outdir, "graph.gpickle") |
| 95 | + with open(file_path, 'wb') as f: |
| 96 | + pickle.dump(graph, f, pickle.HIGHEST_PROTOCOL) |
| 97 | + print("Graph saved in", file_path) |
| 98 | + return 0 |
| 99 | + |
| 100 | + |
| 101 | +def add_node_attribute_to_graph(graph, texture, name, save=True, outdir=None): |
| 102 | + """ |
| 103 | + Add a node attribute to the graph using the value of the texture at pit positions |
| 104 | + """ |
| 105 | + if save and not outdir: |
| 106 | + outdir = '' |
| 107 | + |
| 108 | + node_values = {} |
| 109 | + for basin in graph.nodes: |
| 110 | + # Get pits indices |
| 111 | + pit = graph.nodes[basin]['pit_index'] |
| 112 | + # Get the texture values for each pit |
| 113 | + node_values[basin] = texture[pit] |
| 114 | + |
| 115 | + # Add the attribute to the graph |
| 116 | + nx.set_node_attributes(graph, values=node_values, name=name) |
| 117 | + |
| 118 | + if save: |
| 119 | + save_graph(graph, outdir) |
| 120 | + |
| 121 | + return graph |
| 122 | + |
| 123 | + |
| 124 | +def add_edge_attribute_to_graph(graph, texture, name, save=True, outdir=None): |
| 125 | + """ |
| 126 | + Add an edge attribute to the graph using the value of the texture at ridge positions |
| 127 | + """ |
| 128 | + if save and not outdir: |
| 129 | + outdir = '' |
| 130 | + |
| 131 | + # Get the adjacency matrix with ridge positions |
| 132 | + adjacency = nx.to_numpy_array(graph, weight='ridge_index', dtype=np.int8) |
| 133 | + # Create and fill a new edge dictionary with the texture values at ridge positions |
| 134 | + ridge_dict = {} |
| 135 | + for i, j in graph.edges: |
| 136 | + ridge_dict[(i, j)] = float(texture[adjacency[i][j]]) |
| 137 | + # Add the attribute to the graph |
| 138 | + nx.set_edge_attributes(graph, ridge_dict, name=name) |
| 139 | + |
| 140 | + if save: |
| 141 | + save_graph(graph, outdir) |
| 142 | + |
| 143 | + return graph |
| 144 | + |
| 145 | + |
| 146 | +def add_geodesic_distances_to_graph(graph, mesh, save=True, outdir=None): |
| 147 | + """ |
| 148 | + Add the geodesic distances between ridge and pits to the corresponding ridge attributes in the graph: |
| 149 | +
|
| 150 | + - geodesic_distance_btw_ridge_pit_i: geodesic distance between the ridge and the first pit |
| 151 | + - geodesic_distance_btw_ridge_pit_j: geodesic distance between the ridge and the second pit |
| 152 | + - geodesic_distance_btw_pits: geodesic distance between the two pits connected by the ridge (sum of previous values) |
| 153 | + """ |
| 154 | + if save and not outdir: |
| 155 | + outdir = '' |
| 156 | + |
| 157 | + # Create and fill a new edge dictionary with the geodesic distances |
| 158 | + geodistances = {} |
| 159 | + for i, j in graph.edges: |
| 160 | + ridge = graph.edges[(i, j)]['ridge_index'] |
| 161 | + pit_i = graph.nodes[i]['pit_index'] |
| 162 | + pit_j = graph.nodes[j]['pit_index'] |
| 163 | + # Compute the geodesic distances between ridge and both pits |
| 164 | + gd_from_ridge = geodesics.compute_gdist(mesh, ridge) |
| 165 | + geodistances[(i, j)] = {} |
| 166 | + geodistances[(i, j)]['geodesic_distance_btw_ridge_pit_i'] = float(gd_from_ridge[pit_i]) |
| 167 | + geodistances[(i, j)]['geodesic_distance_btw_ridge_pit_j'] = float(gd_from_ridge[pit_j]) |
| 168 | + geodistances[(i, j)]['geodesic_distance_btw_pits'] = float(gd_from_ridge[pit_i]) + float(gd_from_ridge[pit_j]) |
| 169 | + |
| 170 | + # Add the attribute to the graph |
| 171 | + nx.set_edge_attributes(graph, geodistances) |
| 172 | + |
| 173 | + if save: |
| 174 | + save_graph(graph, outdir) |
| 175 | + |
| 176 | + return graph |
| 177 | + |
| 178 | + |
| 179 | +def add_mean_value_to_graph(graph, texture, name, save=True, outdir=None): |
| 180 | + """ |
| 181 | + Add the mean value of the texture over the vertices of each basin to the graph node attributes |
| 182 | + """ |
| 183 | + if save and not outdir: |
| 184 | + outdir = '' |
| 185 | + |
| 186 | + average_values = {} |
| 187 | + for basin in graph.nodes: |
| 188 | + # Get the list of vertices |
| 189 | + vertices = graph.nodes[basin]['basin_vertices'] |
| 190 | + # Compute the average value of texture over the vertices |
| 191 | + mean_value = np.mean(texture[vertices]) |
| 192 | + average_values[basin] = mean_value |
| 193 | + |
| 194 | + # Add the attribute to the graph |
| 195 | + nx.set_node_attributes(graph, average_values, name=name) |
| 196 | + |
| 197 | + if save: |
| 198 | + save_graph(graph, outdir) |
| 199 | + |
| 200 | + return graph |
| 201 | + |
| 202 | + |
| 203 | +def get_textures_from_graph(graph, mesh, save=True, outdir=None): |
| 204 | + """ |
| 205 | + Function that returns the textures from a graph of sulcal pits |
| 206 | + """ |
| 207 | + if save and not outdir: |
| 208 | + outdir = '' |
| 209 | + |
| 210 | + vert = np.array(mesh.vertices) |
| 211 | + |
| 212 | + # texture of labels |
| 213 | + labels = np.full(len(vert), -1, dtype=np.int64) |
| 214 | + for b in graph.nodes: |
| 215 | + labels[graph.nodes[b]['basin_vertices']] = graph.nodes[b]['basin_label'] |
| 216 | + tex_labels = texture.TextureND(darray=labels.flatten()) |
| 217 | + if save: |
| 218 | + io.write_texture(tex_labels, os.path.join(outdir, "labels.gii")) |
| 219 | + |
| 220 | + # texture of pits |
| 221 | + atex_pits = np.zeros((len(vert), 1)) |
| 222 | + pits_indices = list(nx.get_node_attributes(graph, 'pit_index').values()) |
| 223 | + atex_pits[pits_indices] = 1 |
| 224 | + tex_pits = texture.TextureND(darray=atex_pits.flatten()) |
| 225 | + if save: |
| 226 | + io.write_texture(tex_pits, os.path.join(outdir, "pits_tex_from_graph.gii")) |
| 227 | + |
| 228 | + # texture of ridges |
| 229 | + atex_ridges = np.zeros((len(vert), 1)) |
| 230 | + ridges_indices = list(nx.get_edge_attributes(graph, 'ridge_index').values()) |
| 231 | + atex_ridges[ridges_indices] = 1 |
| 232 | + tex_ridges = texture.TextureND(darray=atex_ridges.flatten()) |
| 233 | + if save: |
| 234 | + io.write_texture(tex_ridges, os.path.join(outdir, "rigdes_tex_from_graph.gii")) |
| 235 | + |
| 236 | + return tex_labels, tex_pits, tex_ridges |
0 commit comments