|
9 | 9 | import pickle |
10 | 10 | import argparse |
11 | 11 | from collections import defaultdict |
| 12 | +import importlib.metadata |
12 | 13 |
|
13 | 14 | sys.path.insert(1, os.path.dirname(__file__)) |
14 | 15 | from core import * |
15 | 16 | from post import * |
16 | | -from . import __version__ |
17 | 17 | import genotypeio, cis, trans, susie |
18 | 18 |
|
19 | 19 |
|
@@ -59,7 +59,7 @@ def main(): |
59 | 59 | raise ValueError("Interactions are only supported in 'cis_nominal' or 'trans' mode.") |
60 | 60 |
|
61 | 61 | logger = SimpleLogger(os.path.join(args.output_dir, f'{args.prefix}.tensorQTL.{args.mode}.log')) |
62 | | - logger.write(f'[{datetime.now().strftime("%b %d %H:%M:%S")}] Running TensorQTL v{__version__}: {args.mode.split("_")[0]}-QTL mapping') |
| 62 | + logger.write(f'[{datetime.now().strftime("%b %d %H:%M:%S")}] Running TensorQTL v{importlib.metadata.version("tensorqtl")}: {args.mode.split("_")[0]}-QTL mapping') |
63 | 63 | if torch.cuda.is_available(): |
64 | 64 | logger.write(f' * using GPU ({torch.cuda.get_device_name(torch.cuda.current_device())})') |
65 | 65 | else: |
@@ -230,14 +230,14 @@ def main(): |
230 | 230 | summary_df = pd.read_csv(args.cis_output, sep='\t', index_col=0) |
231 | 231 | summary_df.rename(columns={'minor_allele_samples':'ma_samples', 'minor_allele_count':'ma_count'}, inplace=True) |
232 | 232 | if args.chunk_size is None: |
233 | | - res_df = cis.map_independent(genotype_df, variant_df, summary_df, phenotype_df, phenotype_pos_df, covariates_df, |
| 233 | + res_df = cis.map_independent(genotype_df, variant_df, summary_df, phenotype_df, phenotype_pos_df, covariates_df=covariates_df, |
234 | 234 | group_s=group_s, fdr=args.fdr, nperm=args.permutations, window=args.window, |
235 | 235 | maf_threshold=maf_threshold, logger=logger, seed=args.seed, verbose=True) |
236 | 236 | else: |
237 | 237 | res_df = [] |
238 | 238 | for gt_df, var_df, p_df, p_pos_df, _ in genotypeio.generate_paired_chunks(pgr, phenotype_df, phenotype_pos_df, args.chunk_size, |
239 | 239 | dosages=args.dosages, verbose=True): |
240 | | - res_df.append(cis.map_independent(gt_df, var_df, summary_df, p_df, p_pos_df, covariates_df, |
| 240 | + res_df.append(cis.map_independent(gt_df, var_df, summary_df, p_df, p_pos_df, covariates_df=covariates_df, |
241 | 241 | group_s=group_s, fdr=args.fdr, nperm=args.permutations, window=args.window, |
242 | 242 | maf_threshold=maf_threshold, logger=logger, seed=args.seed, verbose=True)) |
243 | 243 | res_df = pd.concat(res_df).reset_index(drop=True) |
|
0 commit comments