-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfinal_word_helper.py
305 lines (247 loc) · 11.3 KB
/
final_word_helper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
import os
import glob
import random
import numpy as np
from PIL import Image
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader, SubsetRandomSampler, WeightedRandomSampler
from torchvision import transforms, models
###############################################################################
# Dataset Definition #
###############################################################################
class WordsDataset(Dataset):
def __init__(self, root, transform=None):
self.root = root
self.transform = transform
self.files = sorted(glob.glob(os.path.join(root, '*.tif')))
# Extract labels from filename: part after the last '-' and before the extension
self.labels = [
os.path.splitext(os.path.basename(f).split('-')[-1])[0] or 'Unknown'
for f in self.files
]
def __len__(self):
return len(self.files)
def __getitem__(self, idx):
img = Image.open(self.files[idx]).convert('RGB')
if self.transform:
img = self.transform(img)
label = self.labels[idx]
return img, label
###############################################################################
# Data Loaders and Samplers #
###############################################################################
def create_loaders(batch_size=32):
"""
Create train/valid/test split with WeightedRandomSampler to handle
class imbalance, plus heavy data augmentation for training.
Adjust transforms as needed for your dataset characteristics.
"""
# Data augmentation transforms for training
train_transform = transforms.Compose([
# Random scale & crop to 224x224
transforms.RandomResizedCrop(224, scale=(0.8, 1.0)),
transforms.RandomHorizontalFlip(),
# Slight rotation
transforms.RandomRotation(degrees=5),
transforms.ToTensor(),
# Normalization for ImageNet pretrained models
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std =[0.229, 0.224, 0.225]),
])
# For validation/testing, just resize and crop to the same shape
eval_transform = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std =[0.229, 0.224, 0.225]),
])
dataset_root = os.path.normpath(os.path.join(
'cvl-database-1-1', 'preprocessed_dataset', 'words_scaled'
))
# Create two Dataset objects: one for training, one for validation, one for test
full_dataset = WordsDataset(root=dataset_root, transform=None)
# Identify all unique classes and create label dictionaries
classes = sorted(list(set(full_dataset.labels)))
label_dict = {i: c for i, c in enumerate(classes)}
inv_label_dict = {v: k for k, v in label_dict.items()}
# Split indices: 70% train, 15% val, 15% test
dataset_size = len(full_dataset)
indices = list(range(dataset_size))
np.random.shuffle(indices)
train_size = int(0.7 * dataset_size)
valid_size = int(0.15 * dataset_size)
train_indices = indices[:train_size]
valid_indices = indices[train_size: train_size + valid_size]
test_indices = indices[train_size + valid_size:]
# Separate Datasets for transforms
# We'll apply the appropriate transform in __getitem__ by creating separate objects.
train_dataset = WordsDataset(root=dataset_root, transform=train_transform)
valid_dataset = WordsDataset(root=dataset_root, transform=eval_transform)
test_dataset = WordsDataset(root=dataset_root, transform=eval_transform)
# WeightedRandomSampler for train
label_indices = [inv_label_dict[label] for label in full_dataset.labels]
# Compute class counts
class_counts = np.bincount(label_indices)
# Inverse frequency
class_weights = 1.0 / (class_counts + 1e-6)
# We only want to weight the training subset
train_sample_weights = [class_weights[idx] for idx in label_indices]
train_subset_weights = [train_sample_weights[i] for i in train_indices]
train_sampler = WeightedRandomSampler(
weights=train_subset_weights,
num_samples=len(train_indices),
replacement=True
)
valid_sampler = SubsetRandomSampler(valid_indices)
test_sampler = SubsetRandomSampler(test_indices)
train_loader = DataLoader(train_dataset, batch_size=batch_size,
sampler=train_sampler, num_workers=4)
valid_loader = DataLoader(valid_dataset, batch_size=batch_size,
sampler=valid_sampler, num_workers=4)
test_loader = DataLoader(test_dataset, batch_size=batch_size,
sampler=test_sampler, num_workers=4)
print("Data Loaders created!")
return classes, train_loader, valid_loader, test_loader, label_dict, class_weights
###############################################################################
# Transfer Learning Model #
###############################################################################
def create_resnet101_model(num_classes=1955, pretrained=True):
"""
Creates a ResNet-101 model, replacing the final layer with a new linear
layer for the specified number of classes.
"""
model = models.resnet101(pretrained=pretrained)
# Replace the final FC layer
# The original final layer is model.fc for ResNet
in_features = model.fc.in_features
model.fc = nn.Linear(in_features, num_classes)
return model
###############################################################################
# Training & Evaluation #
###############################################################################
def train_model(model, train_loader, valid_loader, label_dict,
epochs=12, lr=1e-3, device=None, class_weights=None):
device = device or ("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
# Prepare class weights if provided
if class_weights is not None:
class_weights = torch.tensor(class_weights, dtype=torch.float32, device=device)
criterion = nn.CrossEntropyLoss(weight=class_weights)
else:
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=lr)
# Using a OneCycleLR scheduler (requires steps_per_epoch)
# For smaller datasets, you might reduce the max_lr
steps_per_epoch = len(train_loader)
scheduler = optim.lr_scheduler.OneCycleLR(
optimizer, max_lr=lr, steps_per_epoch=steps_per_epoch, epochs=epochs
)
inv_label_dict = {v: k for k, v in label_dict.items()}
best_val_acc = 0.0
best_state_dict = None
for epoch in range(epochs):
model.train()
total_loss = 0.0
correct = 0
total_samples = 0
for imgs, labels in train_loader:
imgs = imgs.to(device)
labels_idx = torch.tensor([inv_label_dict[l] for l in labels], dtype=torch.long, device=device)
optimizer.zero_grad()
outputs = model(imgs)
loss = criterion(outputs, labels_idx)
loss.backward()
optimizer.step()
scheduler.step()
total_loss += loss.item() * imgs.size(0)
preds = outputs.argmax(dim=1)
correct += (preds == labels_idx).sum().item()
total_samples += imgs.size(0)
epoch_loss = total_loss / total_samples
epoch_acc = 100.0 * correct / total_samples
print(f"Epoch [{epoch+1}/{epochs}] - "
f"Train Loss: {epoch_loss:.4f} | Train Acc: {epoch_acc:.2f}%")
# Evaluate on validation
val_acc = evaluate_accuracy(model, valid_loader, label_dict, device=device)
print(f"Validation Acc: {val_acc:.2f}%")
# Save the best model so far
if val_acc > best_val_acc:
best_val_acc = val_acc
best_state_dict = model.state_dict()
# Load the best model state
if best_state_dict is not None:
model.load_state_dict(best_state_dict)
print(f"Loaded best model with Validation Acc = {best_val_acc:.2f}%")
return model
def evaluate_accuracy(model, loader, label_dict, device=None):
device = device or ("cuda" if torch.cuda.is_available() else "cpu")
model.eval()
model.to(device)
inv_label_dict = {v: k for k, v in label_dict.items()}
correct = 0
total_samples = 0
with torch.no_grad():
for imgs, labels in loader:
imgs = imgs.to(device)
labels_idx = torch.tensor([inv_label_dict[l] for l in labels],
dtype=torch.long, device=device)
outputs = model(imgs)
preds = outputs.argmax(dim=1)
correct += (preds == labels_idx).sum().item()
total_samples += imgs.size(0)
acc = 100.0 * correct / total_samples if total_samples > 0 else 0.0
return acc
def eval_net_full_metrics(model, loader, label_dict, device=None):
"""
This is a more detailed evaluation, computing macro Precision, Recall, F1.
If you just want accuracy, use `evaluate_accuracy`.
"""
device = device or ('cuda' if torch.cuda.is_available() else 'cpu')
model.eval()
model.to(device)
inv_label_dict = {v: k for k, v in label_dict.items()}
num_classes = len(label_dict)
correct, total = 0, 0
true_positive = [0] * num_classes
false_positive = [0] * num_classes
false_negative = [0] * num_classes
with torch.no_grad():
for imgs, labels in loader:
imgs = imgs.to(device)
labels_idx = torch.tensor([inv_label_dict[l] for l in labels],
dtype=torch.long, device=device)
outputs = model(imgs)
preds = outputs.argmax(dim=1)
for i in range(len(labels_idx)):
total += 1
pred_label = preds[i].item()
true_label = labels_idx[i].item()
if pred_label == true_label:
correct += 1
true_positive[true_label] += 1
else:
false_positive[pred_label] += 1
false_negative[true_label] += 1
accuracy = 100.0 * correct / total if total > 0 else 0.0
# Compute macro-level precision, recall, f1
precision_list, recall_list, f1_list = [], [], []
for i in range(num_classes):
tp = true_positive[i]
fp = false_positive[i]
fn = false_negative[i]
precision = tp / (tp + fp) if (tp + fp) > 0 else 0.0
recall = tp / (tp + fn) if (tp + fn) > 0 else 0.0
f1 = (2 * precision * recall) / (precision + recall) if (precision + recall) > 0 else 0.0
precision_list.append(precision)
recall_list.append(recall)
f1_list.append(f1)
macro_precision = sum(precision_list) / num_classes
macro_recall = sum(recall_list) / num_classes
macro_f1 = sum(f1_list) / num_classes
print(f"Accuracy: {accuracy:.2f}%")
print(f"Macro Precision: {macro_precision:.4f}")
print(f"Macro Recall: {macro_recall:.4f}")
print(f"Macro F1-Score: {macro_f1:.4f}")