1- ## YOLOV7 :You Only Look Once目标检测模型在pytorch当中的实现
1+ ## YOLOV8 :You Only Look Once目标检测模型在pytorch当中的实现
22---
33
44## 目录
13139 . [ 参考资料 Reference] ( #Reference )
1414
1515## Top News
16- ** ` 2022-07 ` ** :** 仓库创建,支持step、cos学习率下降法、支持adam、sgd优化器选择、支持学习率根据batch_size自适应调整、新增图片裁剪、支持多GPU训练、支持各个种类目标数量计算、支持heatmap、支持EMA。**
16+ ** ` 2023-03 ` ** :** 仓库创建,支持step、cos学习率下降法、支持adam、sgd优化器选择、支持学习率根据batch_size自适应调整、新增图片裁剪、支持多GPU训练、支持各个种类目标数量计算、支持heatmap、支持EMA。**
1717
1818## 相关仓库
1919| 模型 | 路径 |
@@ -32,17 +32,20 @@ YoloV7-tiny | https://github.com/bubbliiiing/yolov7-tiny-pytorch
3232## 性能情况
3333| 训练数据集 | 权值文件名称 | 测试数据集 | 输入图片大小 | mAP 0.5:0.95 | mAP 0.5 |
3434| :-----: | :-----: | :------: | :------: | :------: | :-----: |
35- | COCO-Train2017 | [ yolov7_weights.pth] ( https://github.com/bubbliiiing/yolov7-pytorch/releases/download/v1.0/yolov7_weights.pth ) | COCO-Val2017 | 640x640 | 50.7 | 69.2
36- | COCO-Train2017 | [ yolov7_x_weights.pth] ( https://github.com/bubbliiiing/yolov7-pytorch/releases/download/v1.0/yolov7_x_weights.pth ) | COCO-Val2017 | 640x640 | 52.4 | 70.5
35+ | COCO-Train2017 | [ yolov8_n.pth] ( https://github.com/bubbliiiing/yolov8-pytorch/releases/download/v1.0/yolov8_n.pth ) | COCO-Val2017 | 640x640 | 36.7 | 52.1
36+ | COCO-Train2017 | [ yolov8_s.pth] ( https://github.com/bubbliiiing/yolov8-pytorch/releases/download/v1.0/yolov8_s.pth ) | COCO-Val2017 | 640x640 | 44.1 | 61.0
37+ | COCO-Train2017 | [ yolov8_m.pth] ( https://github.com/bubbliiiing/yolov8-pytorch/releases/download/v1.0/yolov8_m.pth ) | COCO-Val2017 | 640x640 | 49.3 | 66.3
38+ | COCO-Train2017 | [ yolov8_l.pth] ( https://github.com/bubbliiiing/yolov8-pytorch/releases/download/v1.0/yolov8_l.pth ) | COCO-Val2017 | 640x640 | 52.0 | 68.9
39+ | COCO-Train2017 | [ yolov8_x.pth] ( https://github.com/bubbliiiing/yolov8-pytorch/releases/download/v1.0/yolov8_x.pth ) | COCO-Val2017 | 640x640 | 52.9 | 69.9
3740
3841## 所需环境
3942torch==1.2.0
4043为了使用amp混合精度,推荐使用torch1.7.1以上的版本。
4144
4245## 文件下载
4346训练所需的权值可在百度网盘中下载。
44- 链接: https://pan.baidu.com/s/1uYpjWC1uOo3Q-klpUEy9LQ
45- 提取码: pmua
47+ 链接: https://pan.baidu.com/s/1-khkEUiH-J3YJHVaYuuVbw
48+ 提取码: ss9t
4649
4750VOC数据集下载地址如下,里面已经包括了训练集、测试集、验证集(与测试集一样),无需再次划分:
4851链接: https://pan.baidu.com/s/19Mw2u_df_nBzsC2lg20fQA
@@ -114,7 +117,7 @@ _defaults = {
114117 # 验证集损失较低不代表mAP较高,仅代表该权值在验证集上泛化性能较好。
115118 # 如果出现shape不匹配,同时要注意训练时的model_path和classes_path参数的修改
116119 # --------------------------------------------------------------------------#
117- " model_path" : ' model_data/yolov7_weights .pth' ,
120+ " model_path" : ' model_data/yolov8_s .pth' ,
118121 " classes_path" : ' model_data/coco_classes.txt' ,
119122 # ---------------------------------------------------------------------#
120123 # anchors_path代表先验框对应的txt文件,一般不修改。
@@ -127,11 +130,14 @@ _defaults = {
127130 # ---------------------------------------------------------------------#
128131 " input_shape" : [640 , 640 ],
129132 # ------------------------------------------------------#
130- # 所使用到的yolov7的版本,本仓库一共提供两个:
131- # l : 对应yolov7
132- # x : 对应yolov7_x
133+ # 所使用到的yolov8的版本:
134+ # n : 对应yolov8_n
135+ # s : 对应yolov8_s
136+ # m : 对应yolov8_m
137+ # l : 对应yolov8_l
138+ # x : 对应yolov8_x
133139 # ------------------------------------------------------#
134- " phi" : ' l ' ,
140+ " phi" : ' s ' ,
135141 # ---------------------------------------------------------------------#
136142 # 只有得分大于置信度的预测框会被保留下来
137143 # ---------------------------------------------------------------------#
@@ -172,4 +178,4 @@ img/street.jpg
1721785 . 运行get_map.py即可获得评估结果,评估结果会保存在map_out文件夹中。
173179
174180## Reference
175- https://github.com/WongKinYiu/yolov7
181+ https://github.com/ultralytics/ultralytics
0 commit comments