- ROS_tutorial
- Writing a Simple Publisher and Subscriber (Python)
- Writing a Simple Service and Client (Python)
First, make sure your computer has scipy
installed:
Install Scipy
Also, install map server package:
sudo apt-get install ros-melodic-map-server
Download 3dcloud map file from our release section, place it under thewalkingdead/map
:
link
If roscore
is NOT runing, run this in another terminal:
roscore
Before using thewalkingdead
package, you need to compile source once:
cd { PATH }/ubt_sim_ws
# catkin_make under /ubt_sim_ws
catkin_make
source devel/setup.bash
# Auth to use leg_motion
roslaunch leg_motion walker2_leg.launch account_file:={ Path }/user_account.json
# Run python script
rosrun thewalkingdead walk_demo.py
# Build service, in ${ubt_sim_ws}
catkin_make
# Run service
source ${ubt_sim_ws_HOME}/devel/setup.bash
roslaunch thewalkingdead solver_server_node.launch urdf_path:=${path_to_walker.urdf}
# [ INFO] [1592677570.580549330]: Ready to Solve.
# IK Service name is "inverse_kinematic_solver"
# FK Service name is "forward_kinematic_solver"
# Message type is "Solver", read more in thewalkingdead/srv/Solver.srv
# Note that both IK and FK share the same service, see ik_demo.py for
# usage of both.
roslaunch thewalkingdead task1.launch
roslaunch thewalkingdead task2.launch
roslaunch thewalkingdead task3.launch
Notes:
- 增加了位移偏差末端补偿系数,提高了抓取 4/5 的准确率
- 有待于做更多测试,有小可能会失败
roslaunch thewalkingdead task4.launch
roslaunch thewalkingdead task5.launch
roslaunch thewalkingdead task6.launch
roslaunch thewalkingdead task7.launch
roslaunch thewalkingdead task8.launch
roslaunch thewalkingdead task9.launch
roslaunch thewalkingdead task10.launch
优化:
- 最后几步可以增加 阻尼系数,从而快速拉开完成比赛,缩小用时
roslaunch thewalkingdead task11.launch
roslaunch thewalkingdead task12.launch
roslaunch thewalkingdead task13.launch
roslaunch thewalkingdead task14.launch
优化:
- 可以试着增加阻抗提高重心稳定度,然后可以增大脚步,以减少比赛用时
Python Dependancy:
- from scipy.interpolate import KroghInterpolator
roslaunch thewalkingdead task15.launch
Notes:
- 6秒左右完成任务
- 没有做优化, 具有不稳定性,有一定可能会摔倒
- 采用倒立摆模型
- 除了Ref中的dynamic时候的步态规划, 还分别增加了起步与止步的步态规划
- 参考:
- 双足机器人爬楼梯步态规划与参数 吴飞 (文中起码有超出10处错误)
- 双足机器人步行仿真预实验研究 史耀强
Python Dependancy:
- from scipy.interpolate import KroghInterpolator
Navigation notes:
- 融合Imu参数提高Odometry精度
- 研究曲线走法