-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsft_training.py
223 lines (204 loc) · 8.16 KB
/
sft_training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
import pandas as pd
import dataclasses
import argparse
import os
import torch
from utils.llm_utils import load_model, load_tokenizer
from utils.database_manager import get_db_schema_db_id
from prompts.prompt_loader import load_prompt
from datasets import load_dataset, DatasetDict
from tqdm import tqdm
from transformers import AutoModelForCausalLM, AutoTokenizer
from trl import SFTTrainer, DataCollatorForCompletionOnlyLM
from trl.trainer import SFTConfig
from peft import LoraConfig, TaskType, PeftModel
from typing import Any
from dotenv import load_dotenv
load_dotenv(override=True)
def construct_fineutning_dataset(zero_shot: bool = False):
dataset_name = "finetuning_datasets/zero_shot_sft.csv" if zero_shot else "finetuning_datasets/few_shot_sft.csv"
if os.path.exists(dataset_name):
return load_dataset('csv', data_files=dataset_name)
df = pd.read_json("data/train/train.json")
df = df.sample(frac=1).reset_index(drop=True)
training_datasets = []
for index, row in tqdm(df.iterrows(), total=df.shape[0]):
question = row["question"]
db_id = row["db_id"]
gold_query = row["SQL"]
evidence = row["evidence"]
try:
database_schema = get_db_schema_db_id(
db_id=db_id,
bird_database_path=os.getenv("BASE_TRAIN_DATA_PATH"),
queries=[gold_query],
)
except Exception as e:
print(f"Error in getting database schema: {e}")
continue
if zero_shot:
prompt = load_prompt(
'sql_generation_zero_shot_sft'
)
prompt = prompt.format(
QUESTION=question,
DATABASE_SCHEMA=database_schema,
HINT=evidence,
)
user_message = prompt
ai_message = "```sql\n" + gold_query + "\n```"
training_datasets.append({
"user_message": user_message,
"ai_message": ai_message
})
else:
raise NotImplementedError("Few-shot SFT is not implemented yet.")
dataset = pd.DataFrame(training_datasets)
dataset.to_csv(dataset_name)
if not os.path.exists("finetuning_datasets"):
os.makedirs("finetuning_datasets")
return load_dataset('csv', data_files=dataset_name)
def formatting_prompt_func(training_dataset: Any):
output_texts = []
user_messages = training_dataset["user_message"]
ai_messages = training_dataset["ai_message"]
for user_message, ai_message in zip(user_messages, ai_messages):
messages = [
{"role": "user", "content": user_message},
{"role": "assistant", "content": ai_message}
]
output_texts.append(tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=False))
return output_texts
def filter_samples_based_on_length(example: Any, max_seq_length: int = 8192):
user_messages = example["user_message"]
ai_messages = example["ai_message"]
messages = [
{"role": "user", "content": user_messages},
{"role": "assistant", "content": ai_messages}
]
return len(tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False)) <= max_seq_length
def train_model(dataset: Any, args: argparse.Namespace, tokenizer: AutoTokenizer, model: AutoModelForCausalLM):
dataset = dataset['train'].train_test_split(test_size=0.01, shuffle=True)
dataset = DatasetDict({
'train': dataset['train'],
'validation': dataset['test']
})
collator = DataCollatorForCompletionOnlyLM(args.response_template, tokenizer=tokenizer)
model.config.use_cache = False
# Training Arguments
lora_r = args.lora_rank
lora_alpha = args.lora_alpha
lora_dropout = 0.1
output_dir = f"models/{args.adapter_name}"
adapter_path = f"adapters/{args.adapter_name}"
if not os.path.exists(adapter_path):
os.makedirs(adapter_path)
if not os.path.exists(output_dir):
os.makedirs(output_dir)
num_train_epochs = args.num_train_epochs
bf16 = True
overwrite_output_dir = True
per_device_train_batch_size = args.batch_size
per_device_eval_batch_size = args.batch_size
gradient_accumulation_steps = args.gradient_accumulation_steps
gradient_checkpointing = True
eval_strategy = "steps"
learning_rate = 1e-4
weight_decay = 0.01
lr_scheduler_type = "cosine"
gradient_checkpointing_kwargs = {"use_reentrant": False}
warmup_ratio = 0.1
max_grad_norm = 0.5
group_by_length = True
auto_find_batch_size = False
save_steps = 500
logging_steps = 100
load_best_model_at_end = True
packing = False
save_total_limit = 1
max_seq_length = args.max_seq_length
peft_config = LoraConfig(
lora_alpha=lora_alpha,
lora_dropout=lora_dropout,
r=lora_r,
target_modules=[
"q_proj",
"k_proj",
"v_proj",
"o_proj",
"up_proj",
"down_proj",
"gate_proj",
],
task_type=TaskType.CAUSAL_LM,
)
training_arguments = SFTConfig(
output_dir=output_dir,
overwrite_output_dir=overwrite_output_dir,
num_train_epochs=num_train_epochs,
load_best_model_at_end=load_best_model_at_end,
per_device_train_batch_size=per_device_train_batch_size,
per_device_eval_batch_size=per_device_eval_batch_size,
eval_strategy=eval_strategy,
max_grad_norm=max_grad_norm,
auto_find_batch_size=auto_find_batch_size,
save_total_limit=save_total_limit,
gradient_accumulation_steps=gradient_accumulation_steps,
gradient_checkpointing=gradient_checkpointing,
gradient_checkpointing_kwargs=gradient_checkpointing_kwargs,
save_steps=save_steps,
logging_steps=logging_steps,
learning_rate=learning_rate,
weight_decay=weight_decay,
lr_scheduler_type=lr_scheduler_type,
bf16=bf16,
warmup_ratio=warmup_ratio,
group_by_length=group_by_length,
packing=packing,
report_to="wandb",
max_seq_length=max_seq_length,
)
trainer = SFTTrainer(
model=model,
train_dataset=dataset['train'],
eval_dataset=dataset['validation'],
# peft_config=peft_config,
formatting_func=formatting_prompt_func,
data_collator=collator,
tokenizer=tokenizer,
args=training_arguments,
)
trainer.train()
# save lora adapter
trainer.save_model(adapter_path)
if args.merge_adapter:
# merge adapter
new_model_name = f"{args.hf_username}/{args.adapter_name}"
trainer.tokenizer.push_to_hub(new_model_name)
del model
del trainer
torch.cuda.empty_cache()
base_model = load_model(args.model_name)
model = PeftModel.from_pretrained(base_model, adapter_path)
model = model.merge_and_unload()
model.push_to_hub(new_model_name)
if __name__ == "__main__":
args = argparse.ArgumentParser()
args.add_argument("--model_name", type=str, default="Qwen/Qwen2.5-Coder-3B-Instruct")
args.add_argument("--adapter_name", type=str, default="Qwen2.5-Coder-3B-Instruct-SQL")
args.add_argument("--lora_rank", type=int, default=64)
args.add_argument("--lora_alpha", type=float, default=64)
args.add_argument("--zero_shot", type=bool, default=True)
args.add_argument("--num_train_epochs", type=int, default=3)
args.add_argument("--batch_size", type=int, default=4)
args.add_argument("--gradient_accumulation_steps", type=int, default=8)
args.add_argument("--response_template", type=str, default="assistant")
args.add_argument("--max_seq_length", type=int, default=2500)
args.add_argument("--merge_adapter", type=bool, default=True)
args.add_argument("--hf_username", type=str, default="MrezaPRZ")
args = args.parse_args()
model = load_model(args.model_name)
tokenizer = load_tokenizer(args.model_name)
dataset = construct_fineutning_dataset(args.zero_shot)
dataset = dataset.filter(filter_samples_based_on_length, fn_kwargs={'max_seq_length': args.max_seq_length})
train_model(dataset, args, tokenizer, model)