-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathposeSLAM.m
214 lines (160 loc) · 5.38 KB
/
poseSLAM.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
%% Load g2o data
% Load posegraph
pg = load_g2o('input_MITb_g2o.g2o');
disp(pg);
show(pg,'IDs','off');
title('Original Pose Graph');
% Solve posegraph
updated_pg = optimizePoseGraph(pg, 'builtin-trust-region',...
'VerboseOutput', 'on',...
'InitialTrustRegionRadius',100);
figure
show(updated_pg,'IDs','off');
title('Updated Pose Graph');
%% Select nodes to keep and to remove
node_indices = (1:updated_pg.NumNodes);
nodes_to_remove = [];
nodes_to_keep = [];
% node pairs that close loopsss
lc_node_pairs = updated_pg.edgeNodePairs(updated_pg.LoopClosureEdgeIDs);
p = 0.1; % probability of removing a node
for i=1:updated_pg.NumNodes
% we do not remove nodes with lc
if sum(lc_node_pairs == i) > 0
nodes_to_keep = [nodes_to_keep i];
continue;
end
if(rand < p)
nodes_to_remove = [nodes_to_remove i];
else
nodes_to_keep = [nodes_to_keep i];
end
end
n_remove = length(nodes_to_remove);
n_keep = length(nodes_to_keep);
%% Select nodes (punctual policy)
node_indices = (1:updated_pg.NumNodes);
nodes_to_remove = [2, 3];
nodes_to_keep = setdiff(node_indices, nodes_to_remove);
n_remove = length(nodes_to_remove);
n_keep = length(nodes_to_keep);
%% Marginalize over the elimination clique
% get the global markov blanket
markov_blanket_remove = [];
for k = 1:n_remove
markov_blanket_remove = [markov_blanket_remove,...
getMarkovBlanket(updated_pg, nodes_to_remove(k))];
end
markov_blanket_remove = unique(markov_blanket_remove);
n_mb = length(markov_blanket_remove);
% here the ordering is the same as markov_blanket_keep
I_t = computeMatInfJac(updated_pg, markov_blanket_remove);
% build the maps
map_index_t = containers.Map(1:n_mb, markov_blanket_remove);
map_node_t = containers.Map(markov_blanket_remove, 1:n_mb);
% select the nodes to keep in the markov blanket
nodes_to_keep_t = nodes_to_keep(ismember(nodes_to_keep,markov_blanket_remove));
n_keep_t = length(nodes_to_keep_t);
% reorder of the Information matrix in this way:
% [ keep,keep keep,remove ;
% [ remove,keep remove,remove]
for k = 1:n_keep_t
% I copy ?
i = map_node_t(nodes_to_keep_t(k));
% exchange rows
rows_k = I_t((k-1)*3+1:k*3, :);
rows_i = I_t((i-1)*3+1:i*3, :);
I_t((k-1)*3+1:k*3, :) = rows_i;
I_t((i-1)*3+1:i*3, :) = rows_k;
% exchange columns
cols_k = I_t(:,(k-1)*3+1:k*3);
cols_i = I_t(:, (i-1)*3+1:i*3);
I_t(:,(k-1)*3+1:k*3) = cols_i;
I_t(:, (i-1)*3+1:i*3) = cols_k;
% update maps
map_index_t(k) = i;
map_index_t(i) = k;
map_node_t(i) = k;
map_node_t(k) = i;
end
% Compute the marginalized Information matrix with Schur Complement
I_aa = I_t(1:3*n_keep_t, 1:3*n_keep_t);
I_bb = I_t(3*n_keep_t+1:3*n_mb, 3*n_keep_t+1:3*n_mb);
I_ab = I_t(1:3*n_keep_t,3*n_keep_t+1:3*n_mb);
I_marg = I_aa - I_ab * pinv(I_bb) * I_ab';
% plot it
imagesc(I_marg > 0);
%% Compute Chow Liu Tree
n = length(nodes_to_keep_t);
% an array with each row like [i, j, MI(x_i, x_j)]
map_pair_MI = [];
% compute every mutual information pair
% we work in the order [keep, remove]
for k=length(nodes_to_keep_t):-1:1
for j=1:k-1
map_pair_MI= [map_pair_MI; [j k computeMutualInfo(I_marg, j, k)]];
end
end
% sort pairs wrt MI
map_pair_MI_sorted = sortrows(map_pair_MI, 3, 'descend');
% build tree using Chow & Liu algorithm (1968)
edges_in_tree = [];
nodes_in_tree = [];
for k=1:size(map_pair_MI_sorted, 1)
pair = map_pair_MI_sorted(k, 1:2);
% if the next node doesn't make a loop, we had it in the tree
if (~(ismember(pair(1), nodes_in_tree) && ismember(pair(2), nodes_in_tree)))
edges_in_tree = [edges_in_tree; pair];
nodes_in_tree = [nodes_in_tree pair];
end
end
%% Factor recovery in closed form
% First let's compute the covariance matrix
Sigma = inv(I_marg);
% We build Omega and J and retrieve measurements
J = zeros(size(I_marg));
Omega = zeros(size(I_marg));
z = zeros(3, length(edges_in_tree));
for k = 1:size(edges_in_tree, 1)
node_pair = edges_in_tree(k,:);
i = node_pair(1);
j = node_pair(2);
% Retrieve node estimates
meas_i = nodeEstimates(updated_pg, map_index_t(i));
ti = meas_i(1:2)';
Ri = [cos(meas_i(3)) -sin(meas_i(3));
sin(meas_i(3)) cos(meas_i(3))];
meas_j = nodeEstimates(updated_pg, map_index_t(j));
tj = meas_j(1:2)';
Rj = [cos(meas_j(3)) -sin(meas_j(3));
sin(meas_j(3)) cos(meas_j(3))];
Rperp = [0 1; -1 0];
delta_t = Ri' * (tj - ti);
delta_R = (Ri' * Rj);
delta_theta = acos(delta_R(1,1));
z(:, k) = [delta_t', delta_theta]';
% Compute 2D jacobians
% Formula from 2D poseSLAM in GTSAM Dellaert.
J_k = zeros(3, length(I_marg));
J_k(:, (i-1)*3+1:i*3) = [Rj'*Ri Rperp*Rj'*(ti-tj);
0 0 1];
J_k(:, (j-1)*3+1:j*3) = eye(3,3);
Omega_k = inv(J_k * Sigma * J_k');
Omega((k-1)*3+1:k*3, (k-1)*3+1:k*3) = Omega_k;
J((k-1)*3+1:k*3, :) = J_k;
end
% We need to add an absolute pose factor so that J is invertible and we can
% use the closed form solution
J_k = zeros(3, length(I_marg));
J_k(1:3, 1:3) = eye(3,3);
k = 3;
Omega_k = inv(J_k * Sigma * J_k');
Omega((k-1)*3+1:k*3, (k-1)*3+1:k*3) = Omega_k;
J((k-1)*3+1:k*3, :) = J_k;
% Now we can compute the information matrix of the sparsified elimination
% clique
I_spars = J' * Omega * J;
% plot it
figure;
imagesc(I_spars > 1e-3);
title("Sparsified Information matrix on elimination clique");