Skip to content

Latest commit

 

History

History
19 lines (17 loc) · 999 Bytes

deepFactors.md

File metadata and controls

19 lines (17 loc) · 999 Bytes

DeepFactors: Real-Time Probabilistic Dense Monocular SLAM

Authors : Jan Czarnowski , Tristan Laidlow , Ronald Clark , and Andrew J. Davison

Year: 2020


Notes:

  • Learning a compact depth map representation (code c_i) with linear relation D_i = D_i0 + J(I_i)c_i enables corelation between close pixels
  • Three types of errors: photometric, reprojection and geometric. Included in a factor graph framework
  • Inspired by CodeSLAM and CNN-SLAM. Refers to DeepTAM
  • Using both learned and model based methods and both dense and sparse
  • Depth map is learned with a supervised L1 loss + uncertainty parameter
  • One way frames which are not keyframes but are used to refine the last kf
  • pose based criteria for loop closure that adds additional pair wise constraints in the graph

Commentaires:

Encore un système hyper complexe, avec une nouvelle couche d'abstraction due au code... Implémentation de la depth map dans le factor graph très intéressante et compréhensible cependant.