Skip to content

Latest commit

 

History

History
30 lines (25 loc) · 1.31 KB

gpb.md

File metadata and controls

30 lines (25 loc) · 1.31 KB

A visual introduction to Gaussian Belief Propagation

Author: Davison & co

Year: 2021

Link: https://gaussianbp.github.io/

Notes:

  • Inference = forming the posterior
  • BP (Belief Propagation) => exact marginal computation in tree-structured graph BUT lack of convergence guarantees
  • GPB = BP where all factors are Gaussians
  • MAP inference => finding Xmap = argmax_X P(X|D)
  • marginal inference => finding p(x_i|D)
  • Hammersley-Clifford theorem => p(X) = PI f_i(X_i)
  • Lack of factor between 2 variables => conditionnally independent
  • Factor graphs ~ Energy based models
  • BP in 3 steps: Factor to variable messages / Variable to factor messages / belief updates
  • BP minimizes the KL divergence
  • 2 parametrization of gaussian distribution: Moment form (classical) and canonical form (w/ information vector and precision matrix)
  • Precision matrix is sparse and represents the connections in the f graph
  • MAP inference solves for mu while marginal inference solves for both mu and precision matrix
  • Covariance scalling = turning non Gaussian distr to Gaussian
  • possible to prioritize sending messages that contribute the most to overall convergence
  • GP can converge with arbitrary message passing schedule

Commentaires:

Relire l'appendice et jeter un oeil au notebook, colle bien avec les objectifs de la thèse