Skip to content

Latest commit

 

History

History
35 lines (30 loc) · 1.79 KB

tightly-couplet_VDVLI_ice.md

File metadata and controls

35 lines (30 loc) · 1.79 KB

Tightly-coupled Visual-DVL-Inertial Odometry for Robot-based Ice-water Boundary Exploration

Author: Zhao

Year: 2023

Notes:

  • Multi State Constraint Kalman Filter (MSCKF) with vision, DVL, IMU and pressure
  • DVL aided feature enhancement + marginalization scheme that leads to best performances
  • optimization based VIO allow relinearization, not filtering
  • classic IMU update model
  • DVL velocity measurement update, function of both angular and linear velocity: $$

\mathbf{z}_{D, k}=h_D\left(\mathbf{x}_k\right)+\mathbf{n}_D={ }D^I \mathbf{R}^{\top}\left({ }G^{I_k} \mathbf{R}^G \mathbf{v}{I_k}+\left\lfloor{ }^{I_k} \boldsymbol{\omega}\right\rfloor \times{ }{\times}^I \mathbf{p}_D\right)+\mathbf{n}_D

$$

  • Pressure measurement update function of z coordinates: $$ z_{p_z, k}=h_{p_z}\left(\mathbf{x}_k\right)+n_P=\mathbf{s}_G^{I_k} \mathbf{R}^{\top}{ }_D^I \mathbf{R}P^D \mathbf{R}\left({ }^P \mathbf{P}{i n}-{ }^P \mathbf{P}k\right)+n{p_z} $$
  • Perform left nullspace of the visual features jacobians so that they don't include landmarks in their vector space
  • Use only 2 feature measurement for visual update to save computational cost
  • Need to marginalze two frames at a time (because marginalizing a visual measurement will bring no info if the lmks are not included in the state) cf. Robust Stereo Visual Inertial Odometry for Fast Autonomous Flight
  • aid triangulation of features using the sparse points of the DVL :
    • first interpolate the pose at the DVL timestamp
    • remove outliers of the DVL PC and put it in global frame
    • check if the feature is inside the DVL point cloud
    • perform bilinear interpolation of the feature depth
  • Field exp under ice
  • KLT + FAST > descriptor based method
  • generates simulated data with openVINS (?)
  • visual measurement noise of 0.09 (wtf again)