This repository has been archived by the owner on Jul 2, 2021. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 303
/
Copy pathtrain.py
144 lines (118 loc) · 5.05 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
from __future__ import division
import argparse
import numpy as np
import chainer
from chainer.datasets import ConcatenatedDataset
from chainer.datasets import TransformDataset
from chainer import training
from chainer.training import extensions
from chainer.training.triggers import ManualScheduleTrigger
from chainercv.datasets import voc_bbox_label_names
from chainercv.datasets import VOCBboxDataset
from chainercv.extensions import DetectionVOCEvaluator
from chainercv.links import FasterRCNNVGG16
from chainercv.links.model.faster_rcnn import FasterRCNNTrainChain
from chainercv import transforms
# https://docs.chainer.org/en/stable/tips.html#my-training-process-gets-stuck-when-using-multiprocessiterator
try:
import cv2
cv2.setNumThreads(0)
except ImportError:
pass
class Transform(object):
def __init__(self, faster_rcnn):
self.faster_rcnn = faster_rcnn
def __call__(self, in_data):
img, bbox, label = in_data
_, H, W = img.shape
img = self.faster_rcnn.prepare(img)
_, o_H, o_W = img.shape
scale = o_H / H
bbox = transforms.resize_bbox(bbox, (H, W), (o_H, o_W))
# horizontally flip
img, params = transforms.random_flip(
img, x_random=True, return_param=True)
bbox = transforms.flip_bbox(
bbox, (o_H, o_W), x_flip=params['x_flip'])
return img, bbox, label, scale
def main():
parser = argparse.ArgumentParser(
description='ChainerCV training example: Faster R-CNN')
parser.add_argument('--dataset', choices=('voc07', 'voc0712'),
help='The dataset to use: VOC07, VOC07+12',
default='voc07')
parser.add_argument('--gpu', '-g', type=int, default=-1)
parser.add_argument('--lr', '-l', type=float, default=1e-3)
parser.add_argument('--out', '-o', default='result',
help='Output directory')
parser.add_argument('--seed', '-s', type=int, default=0)
parser.add_argument('--step-size', '-ss', type=int, default=50000)
parser.add_argument('--iteration', '-i', type=int, default=70000)
args = parser.parse_args()
np.random.seed(args.seed)
if args.dataset == 'voc07':
train_data = VOCBboxDataset(split='trainval', year='2007')
elif args.dataset == 'voc0712':
train_data = ConcatenatedDataset(
VOCBboxDataset(year='2007', split='trainval'),
VOCBboxDataset(year='2012', split='trainval'))
test_data = VOCBboxDataset(split='test', year='2007',
use_difficult=True, return_difficult=True)
faster_rcnn = FasterRCNNVGG16(n_fg_class=len(voc_bbox_label_names),
pretrained_model='imagenet')
faster_rcnn.use_preset('evaluate')
model = FasterRCNNTrainChain(faster_rcnn)
if args.gpu >= 0:
chainer.cuda.get_device_from_id(args.gpu).use()
model.to_gpu()
optimizer = chainer.optimizers.MomentumSGD(lr=args.lr, momentum=0.9)
optimizer.setup(model)
optimizer.add_hook(chainer.optimizer_hooks.WeightDecay(rate=0.0005))
train_data = TransformDataset(train_data, Transform(faster_rcnn))
train_iter = chainer.iterators.MultiprocessIterator(
train_data, batch_size=1, n_processes=None, shared_mem=100000000)
test_iter = chainer.iterators.SerialIterator(
test_data, batch_size=1, repeat=False, shuffle=False)
updater = chainer.training.updaters.StandardUpdater(
train_iter, optimizer, device=args.gpu)
trainer = training.Trainer(
updater, (args.iteration, 'iteration'), out=args.out)
trainer.extend(
extensions.snapshot_object(model.faster_rcnn, 'snapshot_model.npz'),
trigger=(args.iteration, 'iteration'))
trainer.extend(extensions.ExponentialShift('lr', 0.1),
trigger=(args.step_size, 'iteration'))
log_interval = 20, 'iteration'
plot_interval = 3000, 'iteration'
print_interval = 20, 'iteration'
trainer.extend(chainer.training.extensions.observe_lr(),
trigger=log_interval)
trainer.extend(extensions.LogReport(trigger=log_interval))
trainer.extend(extensions.PrintReport(
['iteration', 'epoch', 'elapsed_time', 'lr',
'main/loss',
'main/roi_loc_loss',
'main/roi_cls_loss',
'main/rpn_loc_loss',
'main/rpn_cls_loss',
'validation/main/map',
]), trigger=print_interval)
trainer.extend(extensions.ProgressBar(update_interval=10))
if extensions.PlotReport.available():
trainer.extend(
extensions.PlotReport(
['main/loss'],
file_name='loss.png', trigger=plot_interval
),
trigger=plot_interval
)
trainer.extend(
DetectionVOCEvaluator(
test_iter, model.faster_rcnn, use_07_metric=True,
label_names=voc_bbox_label_names),
trigger=ManualScheduleTrigger(
[args.step_size, args.iteration], 'iteration'))
trainer.extend(extensions.dump_graph('main/loss'))
trainer.run()
if __name__ == '__main__':
main()