@@ -290,46 +290,46 @@ Since the hidden Translator in [SimVP](https://arxiv.org/abs/2211.12509) can be
290
290
291
291
## Human 3.6M Benchmarks
292
292
293
- We further provide high-resolution benchmark results on [ Human3.6M] ( http://vision.imar.ro/human3.6m/pami-h36m.pdf ) dataset using $4\rightarrow 4$ frames prediction setting. Metrics (MSE, MAE, SSIM, pSNR, LPIPS) of the the best models are reported in three trials. We use the 256x256 resolutions, similar to [ STRPM] ( https://github.com/ZhengChang467/STRPM ) . Parameters (M), FLOPs (G), and V100 inference FPS (s) are also reported for all methods. The default training setup is trained 100 epochs by Adam optimizer with a batch size of 16 and Cosine scheduler (no warm-up) on ** single GPU** or ** 4GPUs** , and we report the used GPU setups for each methods (also shown in the config).
293
+ We further provide high-resolution benchmark results on [ Human3.6M] ( http://vision.imar.ro/human3.6m/pami-h36m.pdf ) dataset using $4\rightarrow 4$ frames prediction setting. Metrics (MSE, MAE, SSIM, pSNR, LPIPS) of the best models are reported in three trials. We use 256x256 resolutions, similar to [ STRPM] ( https://github.com/ZhengChang467/STRPM ) . Parameters (M), FLOPs (G), and V100 inference FPS (s) are also reported for all methods. The default training setup is trained 100 epochs by Adam optimizer with a batch size of 16 and Cosine scheduler (no warm-up) on ** single GPU** or ** 4GPUs** , and we report the used GPU setups for each method (also shown in the config).
294
294
295
295
### ** STL Benchmarks on Human 3.6M**
296
296
297
297
For a fair comparison of different methods, we report the best results when models are trained to convergence. We provide config files in [ configs/human] ( https://github.com/chengtan9907/OpenSTL/configs/human ) .
298
298
299
299
| Method | Setting | GPUs | Params | FLOPs | FPS | MSE | MAE | SSIM | PSNR | LPIPS | Download |
300
300
| --------------| :---------:| :------:| :------:| :------:| :---:| :-----:| :------:| :------:| :-----:| :-------:| :------------:|
301
- | ConvLSTM-S | 50 epoch | 1xbs16 | 15.5M | 347.0 | 52 | 125.5 | 1566.7 | 0.9813 | 33.40 | 0.03557 | model \| log |
302
- | E3D-LSTM | 50 epoch | 4xbs4 | 60.9M | 542.0 | 7 | 143.3 | 1442.5 | 0.9803 | 32.52 | 0.04133 | model \| log |
303
- | PredNet | 50 epoch | 1xbs16 | 12.5M | 13.7 | 176 | | | | | | model \| log |
304
- | PhyDNet | 50 epoch | 1xbs16 | 4.2M | 19.1 | 57 | | | | | | model \| log |
305
- | MAU | 50 epoch | 1xbs16 | 20.2M | 105.0 | 6 | 127.3 | 1577.0 | 0.9812 | 33.33 | 0.03561 | model \| log |
306
- | MIM | 50 epoch | 4xbs4 | 47.6M | 1051.0 | 17 | 112.1 | 1467.1 | 0.9829 | 33.97 | 0.03338 | model \| log |
307
- | PredRNN | 50 epoch | 1xbs16 | 24.6M | 704.0 | 25 | 113.2 | 1458.3 | 0.9831 | 33.94 | 0.03245 | model \| log |
308
- | PredRNN++ | 50 epoch | 1xbs16 | 39.3M | 1033.0 | 18 | 110.0 | 1452.2 | 0.9832 | 34.02 | 0.03196 | model \| log |
309
- | PredRNN.V2 | 50 epoch | 1xbs16 | 24.6M | 708.0 | 24 | 114.9 | 1484.7 | 0.9827 | 33.84 | 0.03334 | model \| log |
310
- | DMVFN | 50 epoch | 1xbs16 | 8.6M | 63.6 | 341 | 109.3 | 1449.3 | 0.9833 | 34.05 | 0.03189 | model \| log |
311
- | SimVP+IncepU | 50 epoch | 1xbs16 | 41.2M | 197.0 | 26 | 115.8 | 1511.5 | 0.9822 | 33.73 | 0.03467 | model \| log |
312
- | SimVP+gSTA-S | 50 epoch | 1xbs16 | 11.3M | 74.6 | 52 | 108.4 | 1441.0 | 0.9834 | 34.08 | 0.03224 | model \| log |
313
- | TAU | 50 epoch | 1xbs16 | 37.6M | 182.0 | 26 | 113.3 | 1390.7 | 0.9839 | 34.03 | 0.02783 | model \| log |
301
+ | ConvLSTM-S | 50 epoch | 1xbs16 | 15.5M | 347.0 | 52 | 125.5 | 1566.7 | 0.9813 | 33.40 | 0.03557 | [ model] ( https://github.com/chengtan9907/OpenSTL/releases/download/human-weights/human_convlstm_cos_ep50.pth ) \| [ log] ( https://github.com/chengtan9907/OpenSTL/releases/download/human-weights/human_convlstm_cos_ep50.log ) |
302
+ | E3D-LSTM | 50 epoch | 4xbs4 | 60.9M | 542.0 | 7 | 143.3 | 1442.5 | 0.9803 | 32.52 | 0.04133 | [ model] ( https://github.com/chengtan9907/OpenSTL/releases/download/human-weights/human_s3dlstm_cos_ep50.pth ) \| [ log] ( https://github.com/chengtan9907/OpenSTL/releases/download/human-weights/human_s3dlstm_cos_ep50.log ) |
303
+ | PredNet | 50 epoch | 1xbs16 | 12.5M | 13.7 | 176 | 261.9 | 1625.3 | 0.9786 | 31.76 | 0.03264 | [ model] ( https://github.com/chengtan9907/OpenSTL/releases/download/human-weights/human_prednet_cos_ep50.pth ) \| [ log] ( https://github.com/chengtan9907/OpenSTL/releases/download/human-weights/human_prednet_cos_ep50.log ) |
304
+ | PhyDNet | 50 epoch | 1xbs16 | 4.2M | 19.1 | 57 | 125.7 | 1614.7 | 0.9804 | 39.84 | 0.03709 | [ model] ( https://github.com/chengtan9907/OpenSTL/releases/download/human-weights/human_phydnet_cos_ep50.pth ) \| [ log] ( https://github.com/chengtan9907/OpenSTL/releases/download/human-weights/human_phydnet_cos_ep50.log ) |
305
+ | MAU | 50 epoch | 1xbs16 | 20.2M | 105.0 | 6 | 127.3 | 1577.0 | 0.9812 | 33.33 | 0.03561 | [ model] ( https://github.com/chengtan9907/OpenSTL/releases/download/human-weights/human_mau_cos_ep50.pth ) \| [ log] ( https://github.com/chengtan9907/OpenSTL/releases/download/human-weights/human_mau_cos_ep50.log ) |
306
+ | MIM | 50 epoch | 4xbs4 | 47.6M | 1051.0 | 17 | 112.1 | 1467.1 | 0.9829 | 33.97 | 0.03338 | [ model] ( https://github.com/chengtan9907/OpenSTL/releases/download/human-weights/human_mim_cos_ep50.pth ) \| [ log] ( https://github.com/chengtan9907/OpenSTL/releases/download/human-weights/human_mim_cos_ep50.log ) |
307
+ | PredRNN | 50 epoch | 1xbs16 | 24.6M | 704.0 | 25 | 113.2 | 1458.3 | 0.9831 | 33.94 | 0.03245 | [ model] ( https://github.com/chengtan9907/OpenSTL/releases/download/human-weights/human_predrnn_cos_ep50.pth ) \| [ log] ( https://github.com/chengtan9907/OpenSTL/releases/download/human-weights/human_predrnn_cos_ep50.log ) |
308
+ | PredRNN++ | 50 epoch | 1xbs16 | 39.3M | 1033.0 | 18 | 110.0 | 1452.2 | 0.9832 | 34.02 | 0.03196 | [ model] ( https://github.com/chengtan9907/OpenSTL/releases/download/human-weights/human_predrnnpp_cos_ep50.pth ) \| [ log] ( https://github.com/chengtan9907/OpenSTL/releases/download/human-weights/human_predrnnpp_cos_ep50.log ) |
309
+ | PredRNN.V2 | 50 epoch | 1xbs16 | 24.6M | 708.0 | 24 | 114.9 | 1484.7 | 0.9827 | 33.84 | 0.03334 | [ model] ( https://github.com/chengtan9907/OpenSTL/releases/download/human-weights/human_predrnnv2_cos_ep50.pth ) \| [ log] ( https://github.com/chengtan9907/OpenSTL/releases/download/human-weights/human_predrnnv2_cos_ep50.log ) |
310
+ | DMVFN | 50 epoch | 1xbs16 | 8.6M | 63.6 | 341 | 109.3 | 1449.3 | 0.9833 | 34.05 | 0.03189 | [ model] ( https://github.com/chengtan9907/OpenSTL/releases/download/human-weights/human_dmvfn_cos_ep50.pth ) \| [ log] ( https://github.com/chengtan9907/OpenSTL/releases/download/human-weights/human_dmvfn_cos_ep50.log ) |
311
+ | SimVP+IncepU | 50 epoch | 1xbs16 | 41.2M | 197.0 | 26 | 115.8 | 1511.5 | 0.9822 | 33.73 | 0.03467 | [ model] ( https://github.com/chengtan9907/OpenSTL/releases/download/human-weights/human_simvp_incepu_cos_ep50.pth ) \| [ log] ( https://github.com/chengtan9907/OpenSTL/releases/download/human-weights/human_simvp_incepu_cos_ep50.log ) |
312
+ | SimVP+gSTA-S | 50 epoch | 1xbs16 | 11.3M | 74.6 | 52 | 108.4 | 1441.0 | 0.9834 | 34.08 | 0.03224 | [ model] ( https://github.com/chengtan9907/OpenSTL/releases/download/human-weights/human_simvp_gsta_cos_ep50.pth ) \| [ log] ( https://github.com/chengtan9907/OpenSTL/releases/download/human-weights/human_simvp_gsta_cos_ep50.log ) |
313
+ | TAU | 50 epoch | 1xbs16 | 37.6M | 182.0 | 26 | 113.3 | 1390.7 | 0.9839 | 34.03 | 0.02783 | [ model] ( https://github.com/chengtan9907/OpenSTL/releases/download/human-weights/human_tau_cos_ep50.pth ) \| [ log] ( https://github.com/chengtan9907/OpenSTL/releases/download/human-weights/human_tau_cos_ep50.log ) |
314
314
315
315
### ** Benchmark of MetaFormers Based on SimVP (MetaVP)**
316
316
317
- Since the hidden Translator in [ SimVP] ( https://arxiv.org/abs/2211.12509 ) can be replaced by any [ Metaformer] ( https://arxiv.org/abs/2111.11418 ) block which achieves ` token mixing ` and ` channel mixing ` , we benchmark popular Metaformer architectures on SimVP with 100-epoch training. We provide config file in [ configs/kth/human] ( https://github.com/chengtan9907/OpenSTL/configs/human/simvp/ ) .
317
+ Since the hidden Translator in [ SimVP] ( https://arxiv.org/abs/2211.12509 ) can be replaced by any [ Metaformer] ( https://arxiv.org/abs/2111.11418 ) block which achieves ` token mixing ` and ` channel mixing ` , we benchmark popular Metaformer architectures on SimVP with 100-epoch training. We provide config files in [ configs/kth/human] ( https://github.com/chengtan9907/OpenSTL/configs/human/simvp/ ) .
318
318
319
319
| MetaFormer | Setting | GPUs | Params | FLOPs | FPS | MSE | MAE | SSIM | PSNR | LPIPS | Download |
320
320
| ------------------| :---------:| :------:| :------:| :-----:| :---:| :-----:| :------:| :------:| :-----:| :-------:| :------------:|
321
- | IncepU (SimVPv1) | 50 epoch | 1xbs16 | 41.2M | 197.0 | 26 | 115.8 | 1511.5 | 0.9822 | 33.73 | 0.03467 | model \| log |
322
- | gSTA (SimVPv2) | 50 epoch | 1xbs16 | 11.3M | 74.6 | 52 | 108.4 | 1441.0 | 0.9834 | 34.08 | 0.03224 | model \| log |
323
- | ViT | 50 epoch | 4xbs4 | 28.3M | 239.0 | 17 | 136.3 | 1603.5 | 0.9796 | 33.10 | 0.03729 | model \| log |
324
- | Swin Transformer | 50 epoch | 1xbs16 | 38.8M | 188.0 | 28 | 133.2 | 1599.7 | 0.9799 | 33.16 | 0.03766 | model \| log |
325
- | Uniformer | 50 epoch | 4xbs4 | 27.7M | 211.0 | 14 | 116.3 | 1497.7 | 0.9824 | 33.76 | 0.03385 | model \| log |
326
- | MLP-Mixer | 50 epoch | 1xbs16 | 47.0M | 164.0 | 34 | 125.7 | 1511.9 | 0.9819 | 33.49 | 0.03417 | model \| log |
327
- | ConvMixer | 50 epoch | 1xbs16 | 3.1M | 39.4 | 84 | 115.8 | 1527.4 | 0.9822 | 33.67 | 0.03436 | model \| log |
328
- | Poolformer | 50 epoch | 1xbs16 | 31.2M | 156.0 | 30 | 118.4 | 1484.1 | 0.9827 | 33.78 | 0.03313 | model \| log |
329
- | ConvNeXt | 50 epoch | 1xbs16 | 31.4M | 157.0 | 33 | 113.4 | 1469.7 | 0.9828 | 33.86 | 0.03305 | model \| log |
330
- | VAN | 50 epoch | 1xbs16 | 37.5M | 182.0 | 24 | | | | | | model \| log |
331
- | HorNet | 50 epoch | 1xbs16 | 28.1M | 143.0 | 33 | 118.1 | 1481.1 | 0.9824 | 33.73 | 0.03333 | model \| log |
332
- | MogaNet | 50 epoch | 1xbs16 | 8.6M | 63.6 | 56 | 109.1 | 1446.4 | 0.9834 | 34.05 | 0.03163 | model \| log |
333
- | TAU | 50 epoch | 1xbs16 | 37.6M | 182.0 | 26 | 113.3 | 1390.7 | 0.9839 | 34.03 | 0.02783 | model \| log |
321
+ | IncepU (SimVPv1) | 50 epoch | 1xbs16 | 41.2M | 197.0 | 26 | 115.8 | 1511.5 | 0.9822 | 33.73 | 0.03467 | [ model] ( https://github.com/chengtan9907/OpenSTL/releases/download/human-weights/human_simvp_incepu_cos_ep50.pth ) \| [ log] ( https://github.com/chengtan9907/OpenSTL/releases/download/human-weights/human_simvp_incepu_cos_ep50.log ) |
322
+ | gSTA (SimVPv2) | 50 epoch | 1xbs16 | 11.3M | 74.6 | 52 | 108.4 | 1441.0 | 0.9834 | 34.08 | 0.03224 | [ model] ( https://github.com/chengtan9907/OpenSTL/releases/download/human-weights/human_simvp_gsta_cos_ep50.pth ) \| [ log] ( https://github.com/chengtan9907/OpenSTL/releases/download/human-weights/human_simvp_gsta_cos_ep50.log ) |
323
+ | ViT | 50 epoch | 4xbs4 | 28.3M | 239.0 | 17 | 136.3 | 1603.5 | 0.9796 | 33.10 | 0.03729 | [ model] ( https://github.com/chengtan9907/OpenSTL/releases/download/human-weights/human_simvp_vit_cos_ep50.pth ) \| [ log] ( https://github.com/chengtan9907/OpenSTL/releases/download/human-weights/human_simvp_vit_cos_ep50.log ) |
324
+ | Swin Transformer | 50 epoch | 1xbs16 | 38.8M | 188.0 | 28 | 133.2 | 1599.7 | 0.9799 | 33.16 | 0.03766 | [ model] ( https://github.com/chengtan9907/OpenSTL/releases/download/human-weights/human_simvp_swin_cos_ep50.pth ) \| [ log] ( https://github.com/chengtan9907/OpenSTL/releases/download/human-weights/human_simvp_swin_cos_ep50.log ) |
325
+ | Uniformer | 50 epoch | 4xbs4 | 27.7M | 211.0 | 14 | 116.3 | 1497.7 | 0.9824 | 33.76 | 0.03385 | [ model] ( https://github.com/chengtan9907/OpenSTL/releases/download/human-weights/human_simvp_uniformer_cos_ep50.pth ) \| [ log] ( https://github.com/chengtan9907/OpenSTL/releases/download/human-weights/human_simvp_uniformer_cos_ep50.log ) |
326
+ | MLP-Mixer | 50 epoch | 1xbs16 | 47.0M | 164.0 | 34 | 125.7 | 1511.9 | 0.9819 | 33.49 | 0.03417 | [ model] ( https://github.com/chengtan9907/OpenSTL/releases/download/human-weights/human_simvp_mlpmixer_cos_ep50.pth ) \| [ log] ( https://github.com/chengtan9907/OpenSTL/releases/download/human-weights/human_simvp_mlpmixer_cos_ep50.log ) |
327
+ | ConvMixer | 50 epoch | 1xbs16 | 3.1M | 39.4 | 84 | 115.8 | 1527.4 | 0.9822 | 33.67 | 0.03436 | [ model] ( https://github.com/chengtan9907/OpenSTL/releases/download/human-weights/human_simvp_convmixer_cos_ep50.pth ) \| [ log] ( https://github.com/chengtan9907/OpenSTL/releases/download/human-weights/human_simvp_convmixer_cos_ep50.log ) |
328
+ | Poolformer | 50 epoch | 1xbs16 | 31.2M | 156.0 | 30 | 118.4 | 1484.1 | 0.9827 | 33.78 | 0.03313 | [ model] ( https://github.com/chengtan9907/OpenSTL/releases/download/human-weights/human_simvp_poolformer_cos_ep50.pth ) \| [ log] ( https://github.com/chengtan9907/OpenSTL/releases/download/human-weights/human_simvp_poolformer_cos_ep50.log ) |
329
+ | ConvNeXt | 50 epoch | 1xbs16 | 31.4M | 157.0 | 33 | 113.4 | 1469.7 | 0.9828 | 33.86 | 0.03305 | [ model] ( https://github.com/chengtan9907/OpenSTL/releases/download/human-weights/human_simvp_convnext_cos_ep50.pth ) \| [ log] ( https://github.com/chengtan9907/OpenSTL/releases/download/human-weights/human_simvp_convnext_cos_ep50.log ) |
330
+ | VAN | 50 epoch | 1xbs16 | 37.5M | 182.0 | 24 | 111.4 | 1454.5 | 0.9831 | 33.93 | 0.03335 | [ model] ( https://github.com/chengtan9907/OpenSTL/releases/download/human-weights/human_simvp_van_cos_ep50.pth ) \| [ log] ( https://github.com/chengtan9907/OpenSTL/releases/download/human-weights/human_simvp_van_cos_ep50.log ) |
331
+ | HorNet | 50 epoch | 1xbs16 | 28.1M | 143.0 | 33 | 118.1 | 1481.1 | 0.9824 | 33.73 | 0.03333 | [ model] ( https://github.com/chengtan9907/OpenSTL/releases/download/human-weights/human_simvp_hornet_cos_ep50.pth ) \| [ log] ( https://github.com/chengtan9907/OpenSTL/releases/download/human-weights/human_simvp_hornet_cos_ep50.log ) |
332
+ | MogaNet | 50 epoch | 1xbs16 | 8.6M | 63.6 | 56 | 109.1 | 1446.4 | 0.9834 | 34.05 | 0.03163 | [ model] ( https://github.com/chengtan9907/OpenSTL/releases/download/human-weights/human_simvp_moganet_cos_ep50.pth ) \| [ log] ( https://github.com/chengtan9907/OpenSTL/releases/download/human-weights/human_simvp_moganet_cos_ep50.log ) |
333
+ | TAU | 50 epoch | 1xbs16 | 37.6M | 182.0 | 26 | 113.3 | 1390.7 | 0.9839 | 34.03 | 0.02783 | [ model] ( https://github.com/chengtan9907/OpenSTL/releases/download/human-weights/human_tau_cos_ep50.pth ) \| [ log] ( https://github.com/chengtan9907/OpenSTL/releases/download/human-weights/human_tau_cos_ep50.log ) |
334
334
335
335
<p align =" right " >(<a href =" #top " >back to top</a >)</p >
0 commit comments