Skip to content

Commit 4faf1b5

Browse files
committed
add human release
1 parent ec8bf72 commit 4faf1b5

File tree

3 files changed

+129
-129
lines changed

3 files changed

+129
-129
lines changed

configs/human/simvp/SimVP_Swin.py

+1-1
Original file line numberDiff line numberDiff line change
@@ -8,7 +8,7 @@
88
N_T = 8
99
N_S = 4
1010
# training
11-
lr = 1e-3
11+
lr = 5e-4
1212
batch_size = 16
1313
drop_path = 0.1
1414
sched = 'cosine'

docs/en/model_zoos/video_benchmarks.md

+28-28
Original file line numberDiff line numberDiff line change
@@ -290,46 +290,46 @@ Since the hidden Translator in [SimVP](https://arxiv.org/abs/2211.12509) can be
290290

291291
## Human 3.6M Benchmarks
292292

293-
We further provide high-resolution benchmark results on [Human3.6M](http://vision.imar.ro/human3.6m/pami-h36m.pdf) dataset using $4\rightarrow 4$ frames prediction setting. Metrics (MSE, MAE, SSIM, pSNR, LPIPS) of the the best models are reported in three trials. We use the 256x256 resolutions, similar to [STRPM](https://github.com/ZhengChang467/STRPM). Parameters (M), FLOPs (G), and V100 inference FPS (s) are also reported for all methods. The default training setup is trained 100 epochs by Adam optimizer with a batch size of 16 and Cosine scheduler (no warm-up) on **single GPU** or **4GPUs**, and we report the used GPU setups for each methods (also shown in the config).
293+
We further provide high-resolution benchmark results on [Human3.6M](http://vision.imar.ro/human3.6m/pami-h36m.pdf) dataset using $4\rightarrow 4$ frames prediction setting. Metrics (MSE, MAE, SSIM, pSNR, LPIPS) of the best models are reported in three trials. We use 256x256 resolutions, similar to [STRPM](https://github.com/ZhengChang467/STRPM). Parameters (M), FLOPs (G), and V100 inference FPS (s) are also reported for all methods. The default training setup is trained 100 epochs by Adam optimizer with a batch size of 16 and Cosine scheduler (no warm-up) on **single GPU** or **4GPUs**, and we report the used GPU setups for each method (also shown in the config).
294294

295295
### **STL Benchmarks on Human 3.6M**
296296

297297
For a fair comparison of different methods, we report the best results when models are trained to convergence. We provide config files in [configs/human](https://github.com/chengtan9907/OpenSTL/configs/human).
298298

299299
| Method | Setting | GPUs | Params | FLOPs | FPS | MSE | MAE | SSIM | PSNR | LPIPS | Download |
300300
|--------------|:---------:|:------:|:------:|:------:|:---:|:-----:|:------:|:------:|:-----:|:-------:|:------------:|
301-
| ConvLSTM-S | 50 epoch | 1xbs16 | 15.5M | 347.0 | 52 | 125.5 | 1566.7 | 0.9813 | 33.40 | 0.03557 | model \| log |
302-
| E3D-LSTM | 50 epoch | 4xbs4 | 60.9M | 542.0 | 7 | 143.3 | 1442.5 | 0.9803 | 32.52 | 0.04133 | model \| log |
303-
| PredNet | 50 epoch | 1xbs16 | 12.5M | 13.7 | 176 | | | | | | model \| log |
304-
| PhyDNet | 50 epoch | 1xbs16 | 4.2M | 19.1 | 57 | | | | | | model \| log |
305-
| MAU | 50 epoch | 1xbs16 | 20.2M | 105.0 | 6 | 127.3 | 1577.0 | 0.9812 | 33.33 | 0.03561 | model \| log |
306-
| MIM | 50 epoch | 4xbs4 | 47.6M | 1051.0 | 17 | 112.1 | 1467.1 | 0.9829 | 33.97 | 0.03338 | model \| log |
307-
| PredRNN | 50 epoch | 1xbs16 | 24.6M | 704.0 | 25 | 113.2 | 1458.3 | 0.9831 | 33.94 | 0.03245 | model \| log |
308-
| PredRNN++ | 50 epoch | 1xbs16 | 39.3M | 1033.0 | 18 | 110.0 | 1452.2 | 0.9832 | 34.02 | 0.03196 | model \| log |
309-
| PredRNN.V2 | 50 epoch | 1xbs16 | 24.6M | 708.0 | 24 | 114.9 | 1484.7 | 0.9827 | 33.84 | 0.03334 | model \| log |
310-
| DMVFN | 50 epoch | 1xbs16 | 8.6M | 63.6 | 341 | 109.3 | 1449.3 | 0.9833 | 34.05 | 0.03189 | model \| log |
311-
| SimVP+IncepU | 50 epoch | 1xbs16 | 41.2M | 197.0 | 26 | 115.8 | 1511.5 | 0.9822 | 33.73 | 0.03467 | model \| log |
312-
| SimVP+gSTA-S | 50 epoch | 1xbs16 | 11.3M | 74.6 | 52 | 108.4 | 1441.0 | 0.9834 | 34.08 | 0.03224 | model \| log |
313-
| TAU | 50 epoch | 1xbs16 | 37.6M | 182.0 | 26 | 113.3 | 1390.7 | 0.9839 | 34.03 | 0.02783 | model \| log |
301+
| ConvLSTM-S | 50 epoch | 1xbs16 | 15.5M | 347.0 | 52 | 125.5 | 1566.7 | 0.9813 | 33.40 | 0.03557 | [model](https://github.com/chengtan9907/OpenSTL/releases/download/human-weights/human_convlstm_cos_ep50.pth) \| [log](https://github.com/chengtan9907/OpenSTL/releases/download/human-weights/human_convlstm_cos_ep50.log) |
302+
| E3D-LSTM | 50 epoch | 4xbs4 | 60.9M | 542.0 | 7 | 143.3 | 1442.5 | 0.9803 | 32.52 | 0.04133 | [model](https://github.com/chengtan9907/OpenSTL/releases/download/human-weights/human_s3dlstm_cos_ep50.pth) \| [log](https://github.com/chengtan9907/OpenSTL/releases/download/human-weights/human_s3dlstm_cos_ep50.log) |
303+
| PredNet | 50 epoch | 1xbs16 | 12.5M | 13.7 | 176 | 261.9 | 1625.3 | 0.9786 | 31.76 | 0.03264 | [model](https://github.com/chengtan9907/OpenSTL/releases/download/human-weights/human_prednet_cos_ep50.pth) \| [log](https://github.com/chengtan9907/OpenSTL/releases/download/human-weights/human_prednet_cos_ep50.log) |
304+
| PhyDNet | 50 epoch | 1xbs16 | 4.2M | 19.1 | 57 | 125.7 | 1614.7 | 0.9804 | 39.84 | 0.03709 | [model](https://github.com/chengtan9907/OpenSTL/releases/download/human-weights/human_phydnet_cos_ep50.pth) \| [log](https://github.com/chengtan9907/OpenSTL/releases/download/human-weights/human_phydnet_cos_ep50.log) |
305+
| MAU | 50 epoch | 1xbs16 | 20.2M | 105.0 | 6 | 127.3 | 1577.0 | 0.9812 | 33.33 | 0.03561 | [model](https://github.com/chengtan9907/OpenSTL/releases/download/human-weights/human_mau_cos_ep50.pth) \| [log](https://github.com/chengtan9907/OpenSTL/releases/download/human-weights/human_mau_cos_ep50.log) |
306+
| MIM | 50 epoch | 4xbs4 | 47.6M | 1051.0 | 17 | 112.1 | 1467.1 | 0.9829 | 33.97 | 0.03338 | [model](https://github.com/chengtan9907/OpenSTL/releases/download/human-weights/human_mim_cos_ep50.pth) \| [log](https://github.com/chengtan9907/OpenSTL/releases/download/human-weights/human_mim_cos_ep50.log) |
307+
| PredRNN | 50 epoch | 1xbs16 | 24.6M | 704.0 | 25 | 113.2 | 1458.3 | 0.9831 | 33.94 | 0.03245 | [model](https://github.com/chengtan9907/OpenSTL/releases/download/human-weights/human_predrnn_cos_ep50.pth) \| [log](https://github.com/chengtan9907/OpenSTL/releases/download/human-weights/human_predrnn_cos_ep50.log) |
308+
| PredRNN++ | 50 epoch | 1xbs16 | 39.3M | 1033.0 | 18 | 110.0 | 1452.2 | 0.9832 | 34.02 | 0.03196 | [model](https://github.com/chengtan9907/OpenSTL/releases/download/human-weights/human_predrnnpp_cos_ep50.pth) \| [log](https://github.com/chengtan9907/OpenSTL/releases/download/human-weights/human_predrnnpp_cos_ep50.log) |
309+
| PredRNN.V2 | 50 epoch | 1xbs16 | 24.6M | 708.0 | 24 | 114.9 | 1484.7 | 0.9827 | 33.84 | 0.03334 | [model](https://github.com/chengtan9907/OpenSTL/releases/download/human-weights/human_predrnnv2_cos_ep50.pth) \| [log](https://github.com/chengtan9907/OpenSTL/releases/download/human-weights/human_predrnnv2_cos_ep50.log) |
310+
| DMVFN | 50 epoch | 1xbs16 | 8.6M | 63.6 | 341 | 109.3 | 1449.3 | 0.9833 | 34.05 | 0.03189 | [model](https://github.com/chengtan9907/OpenSTL/releases/download/human-weights/human_dmvfn_cos_ep50.pth) \| [log](https://github.com/chengtan9907/OpenSTL/releases/download/human-weights/human_dmvfn_cos_ep50.log) |
311+
| SimVP+IncepU | 50 epoch | 1xbs16 | 41.2M | 197.0 | 26 | 115.8 | 1511.5 | 0.9822 | 33.73 | 0.03467 | [model](https://github.com/chengtan9907/OpenSTL/releases/download/human-weights/human_simvp_incepu_cos_ep50.pth) \| [log](https://github.com/chengtan9907/OpenSTL/releases/download/human-weights/human_simvp_incepu_cos_ep50.log) |
312+
| SimVP+gSTA-S | 50 epoch | 1xbs16 | 11.3M | 74.6 | 52 | 108.4 | 1441.0 | 0.9834 | 34.08 | 0.03224 | [model](https://github.com/chengtan9907/OpenSTL/releases/download/human-weights/human_simvp_gsta_cos_ep50.pth) \| [log](https://github.com/chengtan9907/OpenSTL/releases/download/human-weights/human_simvp_gsta_cos_ep50.log) |
313+
| TAU | 50 epoch | 1xbs16 | 37.6M | 182.0 | 26 | 113.3 | 1390.7 | 0.9839 | 34.03 | 0.02783 | [model](https://github.com/chengtan9907/OpenSTL/releases/download/human-weights/human_tau_cos_ep50.pth) \| [log](https://github.com/chengtan9907/OpenSTL/releases/download/human-weights/human_tau_cos_ep50.log) |
314314

315315
### **Benchmark of MetaFormers Based on SimVP (MetaVP)**
316316

317-
Since the hidden Translator in [SimVP](https://arxiv.org/abs/2211.12509) can be replaced by any [Metaformer](https://arxiv.org/abs/2111.11418) block which achieves `token mixing` and `channel mixing`, we benchmark popular Metaformer architectures on SimVP with 100-epoch training. We provide config file in [configs/kth/human](https://github.com/chengtan9907/OpenSTL/configs/human/simvp/).
317+
Since the hidden Translator in [SimVP](https://arxiv.org/abs/2211.12509) can be replaced by any [Metaformer](https://arxiv.org/abs/2111.11418) block which achieves `token mixing` and `channel mixing`, we benchmark popular Metaformer architectures on SimVP with 100-epoch training. We provide config files in [configs/kth/human](https://github.com/chengtan9907/OpenSTL/configs/human/simvp/).
318318

319319
| MetaFormer | Setting | GPUs | Params | FLOPs | FPS | MSE | MAE | SSIM | PSNR | LPIPS | Download |
320320
|------------------|:---------:|:------:|:------:|:-----:|:---:|:-----:|:------:|:------:|:-----:|:-------:|:------------:|
321-
| IncepU (SimVPv1) | 50 epoch | 1xbs16 | 41.2M | 197.0 | 26 | 115.8 | 1511.5 | 0.9822 | 33.73 | 0.03467 | model \| log |
322-
| gSTA (SimVPv2) | 50 epoch | 1xbs16 | 11.3M | 74.6 | 52 | 108.4 | 1441.0 | 0.9834 | 34.08 | 0.03224 | model \| log |
323-
| ViT | 50 epoch | 4xbs4 | 28.3M | 239.0 | 17 | 136.3 | 1603.5 | 0.9796 | 33.10 | 0.03729 | model \| log |
324-
| Swin Transformer | 50 epoch | 1xbs16 | 38.8M | 188.0 | 28 | 133.2 | 1599.7 | 0.9799 | 33.16 | 0.03766 | model \| log |
325-
| Uniformer | 50 epoch | 4xbs4 | 27.7M | 211.0 | 14 | 116.3 | 1497.7 | 0.9824 | 33.76 | 0.03385 | model \| log |
326-
| MLP-Mixer | 50 epoch | 1xbs16 | 47.0M | 164.0 | 34 | 125.7 | 1511.9 | 0.9819 | 33.49 | 0.03417 | model \| log |
327-
| ConvMixer | 50 epoch | 1xbs16 | 3.1M | 39.4 | 84 | 115.8 | 1527.4 | 0.9822 | 33.67 | 0.03436 | model \| log |
328-
| Poolformer | 50 epoch | 1xbs16 | 31.2M | 156.0 | 30 | 118.4 | 1484.1 | 0.9827 | 33.78 | 0.03313 | model \| log |
329-
| ConvNeXt | 50 epoch | 1xbs16 | 31.4M | 157.0 | 33 | 113.4 | 1469.7 | 0.9828 | 33.86 | 0.03305 | model \| log |
330-
| VAN | 50 epoch | 1xbs16 | 37.5M | 182.0 | 24 | | | | | | model \| log |
331-
| HorNet | 50 epoch | 1xbs16 | 28.1M | 143.0 | 33 | 118.1 | 1481.1 | 0.9824 | 33.73 | 0.03333 | model \| log |
332-
| MogaNet | 50 epoch | 1xbs16 | 8.6M | 63.6 | 56 | 109.1 | 1446.4 | 0.9834 | 34.05 | 0.03163 | model \| log |
333-
| TAU | 50 epoch | 1xbs16 | 37.6M | 182.0 | 26 | 113.3 | 1390.7 | 0.9839 | 34.03 | 0.02783 | model \| log |
321+
| IncepU (SimVPv1) | 50 epoch | 1xbs16 | 41.2M | 197.0 | 26 | 115.8 | 1511.5 | 0.9822 | 33.73 | 0.03467 | [model](https://github.com/chengtan9907/OpenSTL/releases/download/human-weights/human_simvp_incepu_cos_ep50.pth) \| [log](https://github.com/chengtan9907/OpenSTL/releases/download/human-weights/human_simvp_incepu_cos_ep50.log) |
322+
| gSTA (SimVPv2) | 50 epoch | 1xbs16 | 11.3M | 74.6 | 52 | 108.4 | 1441.0 | 0.9834 | 34.08 | 0.03224 | [model](https://github.com/chengtan9907/OpenSTL/releases/download/human-weights/human_simvp_gsta_cos_ep50.pth) \| [log](https://github.com/chengtan9907/OpenSTL/releases/download/human-weights/human_simvp_gsta_cos_ep50.log) |
323+
| ViT | 50 epoch | 4xbs4 | 28.3M | 239.0 | 17 | 136.3 | 1603.5 | 0.9796 | 33.10 | 0.03729 | [model](https://github.com/chengtan9907/OpenSTL/releases/download/human-weights/human_simvp_vit_cos_ep50.pth) \| [log](https://github.com/chengtan9907/OpenSTL/releases/download/human-weights/human_simvp_vit_cos_ep50.log) |
324+
| Swin Transformer | 50 epoch | 1xbs16 | 38.8M | 188.0 | 28 | 133.2 | 1599.7 | 0.9799 | 33.16 | 0.03766 | [model](https://github.com/chengtan9907/OpenSTL/releases/download/human-weights/human_simvp_swin_cos_ep50.pth) \| [log](https://github.com/chengtan9907/OpenSTL/releases/download/human-weights/human_simvp_swin_cos_ep50.log) |
325+
| Uniformer | 50 epoch | 4xbs4 | 27.7M | 211.0 | 14 | 116.3 | 1497.7 | 0.9824 | 33.76 | 0.03385 | [model](https://github.com/chengtan9907/OpenSTL/releases/download/human-weights/human_simvp_uniformer_cos_ep50.pth) \| [log](https://github.com/chengtan9907/OpenSTL/releases/download/human-weights/human_simvp_uniformer_cos_ep50.log) |
326+
| MLP-Mixer | 50 epoch | 1xbs16 | 47.0M | 164.0 | 34 | 125.7 | 1511.9 | 0.9819 | 33.49 | 0.03417 | [model](https://github.com/chengtan9907/OpenSTL/releases/download/human-weights/human_simvp_mlpmixer_cos_ep50.pth) \| [log](https://github.com/chengtan9907/OpenSTL/releases/download/human-weights/human_simvp_mlpmixer_cos_ep50.log) |
327+
| ConvMixer | 50 epoch | 1xbs16 | 3.1M | 39.4 | 84 | 115.8 | 1527.4 | 0.9822 | 33.67 | 0.03436 | [model](https://github.com/chengtan9907/OpenSTL/releases/download/human-weights/human_simvp_convmixer_cos_ep50.pth) \| [log](https://github.com/chengtan9907/OpenSTL/releases/download/human-weights/human_simvp_convmixer_cos_ep50.log) |
328+
| Poolformer | 50 epoch | 1xbs16 | 31.2M | 156.0 | 30 | 118.4 | 1484.1 | 0.9827 | 33.78 | 0.03313 | [model](https://github.com/chengtan9907/OpenSTL/releases/download/human-weights/human_simvp_poolformer_cos_ep50.pth) \| [log](https://github.com/chengtan9907/OpenSTL/releases/download/human-weights/human_simvp_poolformer_cos_ep50.log) |
329+
| ConvNeXt | 50 epoch | 1xbs16 | 31.4M | 157.0 | 33 | 113.4 | 1469.7 | 0.9828 | 33.86 | 0.03305 | [model](https://github.com/chengtan9907/OpenSTL/releases/download/human-weights/human_simvp_convnext_cos_ep50.pth) \| [log](https://github.com/chengtan9907/OpenSTL/releases/download/human-weights/human_simvp_convnext_cos_ep50.log) |
330+
| VAN | 50 epoch | 1xbs16 | 37.5M | 182.0 | 24 | 111.4 | 1454.5 | 0.9831 | 33.93 | 0.03335 | [model](https://github.com/chengtan9907/OpenSTL/releases/download/human-weights/human_simvp_van_cos_ep50.pth) \| [log](https://github.com/chengtan9907/OpenSTL/releases/download/human-weights/human_simvp_van_cos_ep50.log) |
331+
| HorNet | 50 epoch | 1xbs16 | 28.1M | 143.0 | 33 | 118.1 | 1481.1 | 0.9824 | 33.73 | 0.03333 | [model](https://github.com/chengtan9907/OpenSTL/releases/download/human-weights/human_simvp_hornet_cos_ep50.pth) \| [log](https://github.com/chengtan9907/OpenSTL/releases/download/human-weights/human_simvp_hornet_cos_ep50.log) |
332+
| MogaNet | 50 epoch | 1xbs16 | 8.6M | 63.6 | 56 | 109.1 | 1446.4 | 0.9834 | 34.05 | 0.03163 | [model](https://github.com/chengtan9907/OpenSTL/releases/download/human-weights/human_simvp_moganet_cos_ep50.pth) \| [log](https://github.com/chengtan9907/OpenSTL/releases/download/human-weights/human_simvp_moganet_cos_ep50.log) |
333+
| TAU | 50 epoch | 1xbs16 | 37.6M | 182.0 | 26 | 113.3 | 1390.7 | 0.9839 | 34.03 | 0.02783 | [model](https://github.com/chengtan9907/OpenSTL/releases/download/human-weights/human_tau_cos_ep50.pth) \| [log](https://github.com/chengtan9907/OpenSTL/releases/download/human-weights/human_tau_cos_ep50.log) |
334334

335335
<p align="right">(<a href="#top">back to top</a>)</p>

0 commit comments

Comments
 (0)