-
Notifications
You must be signed in to change notification settings - Fork 1.6k
/
Copy pathAsyncCollection.py
405 lines (355 loc) · 14.7 KB
/
AsyncCollection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
from typing import TYPE_CHECKING, Optional, Union
from chromadb.api.types import (
URI,
CollectionMetadata,
Embedding,
PyEmbedding,
Include,
Metadata,
Document,
Image,
Where,
IDs,
GetResult,
QueryResult,
ID,
OneOrMany,
WhereDocument,
)
from chromadb.api.models.CollectionCommon import CollectionCommon
from chromadb.api.collection_configuration import UpdateCollectionConfiguration
if TYPE_CHECKING:
from chromadb.api import AsyncServerAPI # noqa: F401
class AsyncCollection(CollectionCommon["AsyncServerAPI"]):
async def add(
self,
ids: OneOrMany[ID],
embeddings: Optional[
Union[
OneOrMany[Embedding],
OneOrMany[PyEmbedding],
]
] = None,
metadatas: Optional[OneOrMany[Metadata]] = None,
documents: Optional[OneOrMany[Document]] = None,
images: Optional[OneOrMany[Image]] = None,
uris: Optional[OneOrMany[URI]] = None,
) -> None:
"""Add embeddings to the data store.
Args:
ids: The ids of the embeddings you wish to add
embeddings: The embeddings to add. If None, embeddings will be computed based on the documents or images using the embedding_function set for the Collection. Optional.
metadatas: The metadata to associate with the embeddings. When querying, you can filter on this metadata. Optional.
documents: The documents to associate with the embeddings. Optional.
images: The images to associate with the embeddings. Optional.
uris: The uris of the images to associate with the embeddings. Optional.
Returns:
None
Raises:
ValueError: If you don't provide either embeddings or documents
ValueError: If the length of ids, embeddings, metadatas, or documents don't match
ValueError: If you don't provide an embedding function and don't provide embeddings
ValueError: If you provide both embeddings and documents
ValueError: If you provide an id that already exists
"""
add_request = self._validate_and_prepare_add_request(
ids=ids,
embeddings=embeddings,
metadatas=metadatas,
documents=documents,
images=images,
uris=uris,
)
await self._client._add(
collection_id=self.id,
ids=add_request["ids"],
embeddings=add_request["embeddings"],
metadatas=add_request["metadatas"],
documents=add_request["documents"],
uris=add_request["uris"],
tenant=self.tenant,
database=self.database,
)
async def count(self) -> int:
"""The total number of embeddings added to the database
Returns:
int: The total number of embeddings added to the database
"""
return await self._client._count(
collection_id=self.id,
tenant=self.tenant,
database=self.database,
)
async def get(
self,
ids: Optional[OneOrMany[ID]] = None,
where: Optional[Where] = None,
limit: Optional[int] = None,
offset: Optional[int] = None,
where_document: Optional[WhereDocument] = None,
include: Include = ["metadatas", "documents"],
) -> GetResult:
"""Get embeddings and their associate data from the data store. If no ids or where filter is provided returns
all embeddings up to limit starting at offset.
Args:
ids: The ids of the embeddings to get. Optional.
where: A Where type dict used to filter results by. E.g. `{"$and": [{"color" : "red"}, {"price": {"$gte": 4.20}}]}`. Optional.
limit: The number of documents to return. Optional.
offset: The offset to start returning results from. Useful for paging results with limit. Optional.
where_document: A WhereDocument type dict used to filter by the documents. E.g. `{"$contains": "hello"}`. Optional.
include: A list of what to include in the results. Can contain `"embeddings"`, `"metadatas"`, `"documents"`. Ids are always included. Defaults to `["metadatas", "documents"]`. Optional.
Returns:
GetResult: A GetResult object containing the results.
"""
get_request = self._validate_and_prepare_get_request(
ids=ids,
where=where,
where_document=where_document,
include=include,
)
get_results = await self._client._get(
collection_id=self.id,
ids=get_request["ids"],
where=get_request["where"],
where_document=get_request["where_document"],
include=get_request["include"],
limit=limit,
offset=offset,
tenant=self.tenant,
database=self.database,
)
return self._transform_get_response(
response=get_results, include=get_request["include"]
)
async def peek(self, limit: int = 10) -> GetResult:
"""Get the first few results in the database up to limit
Args:
limit: The number of results to return.
Returns:
GetResult: A GetResult object containing the results.
"""
return self._transform_peek_response(
await self._client._peek(
collection_id=self.id,
n=limit,
tenant=self.tenant,
database=self.database,
)
)
async def query(
self,
query_embeddings: Optional[
Union[
OneOrMany[Embedding],
OneOrMany[PyEmbedding],
]
] = None,
query_texts: Optional[OneOrMany[Document]] = None,
query_images: Optional[OneOrMany[Image]] = None,
query_uris: Optional[OneOrMany[URI]] = None,
n_results: int = 10,
where: Optional[Where] = None,
where_document: Optional[WhereDocument] = None,
include: Include = [
"metadatas",
"documents",
"distances",
],
) -> QueryResult:
"""Get the n_results nearest neighbor embeddings for provided query_embeddings or query_texts.
Args:
query_embeddings: The embeddings to get the closes neighbors of. Optional.
query_texts: The document texts to get the closes neighbors of. Optional.
query_images: The images to get the closes neighbors of. Optional.
n_results: The number of neighbors to return for each query_embedding or query_texts. Optional.
where: A Where type dict used to filter results by. E.g. `{"$and": [{"color" : "red"}, {"price": {"$gte": 4.20}}]}`. Optional.
where_document: A WhereDocument type dict used to filter by the documents. E.g. `{"$contains": "hello"}`. Optional.
include: A list of what to include in the results. Can contain `"embeddings"`, `"metadatas"`, `"documents"`, `"distances"`. Ids are always included. Defaults to `["metadatas", "documents", "distances"]`. Optional.
Returns:
QueryResult: A QueryResult object containing the results.
Raises:
ValueError: If you don't provide either query_embeddings, query_texts, or query_images
ValueError: If you provide both query_embeddings and query_texts
ValueError: If you provide both query_embeddings and query_images
ValueError: If you provide both query_texts and query_images
"""
query_request = self._validate_and_prepare_query_request(
query_embeddings=query_embeddings,
query_texts=query_texts,
query_images=query_images,
query_uris=query_uris,
n_results=n_results,
where=where,
where_document=where_document,
include=include,
)
query_results = await self._client._query(
collection_id=self.id,
query_embeddings=query_request["embeddings"],
n_results=query_request["n_results"],
where=query_request["where"],
where_document=query_request["where_document"],
include=query_request["include"],
tenant=self.tenant,
database=self.database,
)
return self._transform_query_response(
response=query_results, include=query_request["include"]
)
async def modify(
self,
name: Optional[str] = None,
metadata: Optional[CollectionMetadata] = None,
configuration: Optional[UpdateCollectionConfiguration] = None,
) -> None:
"""Modify the collection name or metadata
Args:
name: The updated name for the collection. Optional.
metadata: The updated metadata for the collection. Optional.
Returns:
None
"""
self._validate_modify_request(metadata)
# Note there is a race condition here where the metadata can be updated
# but another thread sees the cached local metadata.
# TODO: fixme
await self._client._modify(
id=self.id,
new_name=name,
new_metadata=metadata,
new_configuration=configuration,
)
self._update_model_after_modify_success(name, metadata, configuration)
async def fork(
self,
new_name: str,
) -> "AsyncCollection":
"""Fork the current collection under a new name. The returning collection should contain identical data to the current collection.
This is an experimental API that only works for Hosted Chroma for now.
Args:
new_name: The name of the new collection.
Returns:
Collection: A new collection with the specified name and containing identical data to the current collection.
"""
model = await self._client._fork(
collection_id=self.id,
new_name=new_name,
tenant=self.tenant,
database=self.database,
)
return AsyncCollection(
client=self._client,
model=model,
embedding_function=self._embedding_function,
data_loader=self._data_loader
)
async def update(
self,
ids: OneOrMany[ID],
embeddings: Optional[
Union[
OneOrMany[Embedding],
OneOrMany[PyEmbedding],
]
] = None,
metadatas: Optional[OneOrMany[Metadata]] = None,
documents: Optional[OneOrMany[Document]] = None,
images: Optional[OneOrMany[Image]] = None,
uris: Optional[OneOrMany[URI]] = None,
) -> None:
"""Update the embeddings, metadatas or documents for provided ids.
Args:
ids: The ids of the embeddings to update
embeddings: The embeddings to update. If None, embeddings will be computed based on the documents or images using the embedding_function set for the Collection. Optional.
metadatas: The metadata to associate with the embeddings. When querying, you can filter on this metadata. Optional.
documents: The documents to associate with the embeddings. Optional.
images: The images to associate with the embeddings. Optional.
Returns:
None
"""
update_request = self._validate_and_prepare_update_request(
ids=ids,
embeddings=embeddings,
metadatas=metadatas,
documents=documents,
images=images,
uris=uris,
)
await self._client._update(
collection_id=self.id,
ids=update_request["ids"],
embeddings=update_request["embeddings"],
metadatas=update_request["metadatas"],
documents=update_request["documents"],
uris=update_request["uris"],
tenant=self.tenant,
database=self.database,
)
async def upsert(
self,
ids: OneOrMany[ID],
embeddings: Optional[
Union[
OneOrMany[Embedding],
OneOrMany[PyEmbedding],
]
] = None,
metadatas: Optional[OneOrMany[Metadata]] = None,
documents: Optional[OneOrMany[Document]] = None,
images: Optional[OneOrMany[Image]] = None,
uris: Optional[OneOrMany[URI]] = None,
) -> None:
"""Update the embeddings, metadatas or documents for provided ids, or create them if they don't exist.
Args:
ids: The ids of the embeddings to update
embeddings: The embeddings to add. If None, embeddings will be computed based on the documents using the embedding_function set for the Collection. Optional.
metadatas: The metadata to associate with the embeddings. When querying, you can filter on this metadata. Optional.
documents: The documents to associate with the embeddings. Optional.
Returns:
None
"""
upsert_request = self._validate_and_prepare_upsert_request(
ids=ids,
embeddings=embeddings,
metadatas=metadatas,
documents=documents,
images=images,
uris=uris,
)
await self._client._upsert(
collection_id=self.id,
ids=upsert_request["ids"],
embeddings=upsert_request["embeddings"],
metadatas=upsert_request["metadatas"],
documents=upsert_request["documents"],
uris=upsert_request["uris"],
tenant=self.tenant,
database=self.database,
)
async def delete(
self,
ids: Optional[IDs] = None,
where: Optional[Where] = None,
where_document: Optional[WhereDocument] = None,
) -> None:
"""Delete the embeddings based on ids and/or a where filter
Args:
ids: The ids of the embeddings to delete
where: A Where type dict used to filter the delection by. E.g. `{"$and": [{"color" : "red"}, {"price": {"$gte": 4.20}}]}`. Optional.
where_document: A WhereDocument type dict used to filter the deletion by the document content. E.g. `{"$contains": "hello"}`. Optional.
Returns:
None
Raises:
ValueError: If you don't provide either ids, where, or where_document
"""
delete_request = self._validate_and_prepare_delete_request(
ids, where, where_document
)
await self._client._delete(
collection_id=self.id,
ids=delete_request["ids"],
where=delete_request["where"],
where_document=delete_request["where_document"],
tenant=self.tenant,
database=self.database,
)