@@ -25,7 +25,7 @@ the following pip-installable dependencies enhance the capabilities of the
25
25
- civisml-extensions
26
26
- muffnn
27
27
28
-
28
+
29
29
Install :mod: `pandas ` if you wish to download tables of predictions.
30
30
You can also model on :class: `~pandas.DataFrame ` objects in your interpreter.
31
31
@@ -61,7 +61,7 @@ A :class:`~sklearn.pipeline.Pipeline` allows you to combine multiple
61
61
modeling steps (such as missing value imputation and feature selection) into a
62
62
single model. The :class: `~sklearn.pipeline.Pipeline ` is treated as a unit -- for example,
63
63
cross-validation happens over all steps together.
64
-
64
+
65
65
You can define your model in two ways, either by selecting a pre-defined algorithm
66
66
or by providing your own scikit-learn
67
67
:class: `~sklearn.pipeline.Pipeline ` or :class: `~sklearn.base.BaseEstimator ` object.
@@ -86,17 +86,17 @@ Name Model Type Algorithm
86
86
================================ ================ ================================================================================================================================== ==================================
87
87
sparse_logistic classification `LogisticRegression <http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html >`_ ``C=499999950, tol=1e-08 ``
88
88
gradient_boosting_classifier classification `GradientBoostingClassifier <http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingClassifier.html >`_ ``n_estimators=500, max_depth=2 ``
89
- random_forest_classifier classification `RandomForestClassifier <http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html >`_ ``n_estimators=500 ``
90
- extra_trees_classifier classification `ExtraTreesClassifier <http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.ExtraTreesClassifier.html >`_ ``n_estimators=500 ``
91
- multilayer_perceptron_classifier classification `muffnn.MLPClassifier <https://github.com/civisanalytics/muffnn >`_
92
- stacking_classifier classification `civismlext.StackedClassifier <https://github.com/civisanalytics/civisml-extensions >`_
93
- sparse_linear_regressor regression `LinearRegression <http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html >`_
94
- sparse_ridge_regressor regression `Ridge <http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Ridge.html >`_
89
+ random_forest_classifier classification `RandomForestClassifier <http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html >`_ ``n_estimators=500, max_depth=7 ``
90
+ extra_trees_classifier classification `ExtraTreesClassifier <http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.ExtraTreesClassifier.html >`_ ``n_estimators=500, max_depth=7 ``
91
+ multilayer_perceptron_classifier classification `muffnn.MLPClassifier <https://github.com/civisanalytics/muffnn >`_
92
+ stacking_classifier classification `civismlext.StackedClassifier <https://github.com/civisanalytics/civisml-extensions >`_
93
+ sparse_linear_regressor regression `LinearRegression <http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html >`_
94
+ sparse_ridge_regressor regression `Ridge <http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Ridge.html >`_
95
95
gradient_boosting_regressor regression `GradientBoostingRegressor <http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingRegressor.html >`_ ``n_estimators=500, max_depth=2 ``
96
- random_forest_regressor regression `RandomForestRegressor <http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html >`_ ``n_estimators=500 ``
97
- extra_trees_regressor regression `ExtraTreesRegressor <http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.ExtraTreesRegressor.html >`_ ``n_estimators=500 ``
98
- multilayer_perceptron_regressor regression `muffnn.MLPRegressor <https://github.com/civisanalytics/muffnn >`_
99
- stacking_regressor regression `civismlext.StackedRegressor <https://github.com/civisanalytics/civisml-extensions >`_
96
+ random_forest_regressor regression `RandomForestRegressor <http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html >`_ ``n_estimators=500, max_depth=7 ``
97
+ extra_trees_regressor regression `ExtraTreesRegressor <http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.ExtraTreesRegressor.html >`_ ``n_estimators=500, max_depth=7 ``
98
+ multilayer_perceptron_regressor regression `muffnn.MLPRegressor <https://github.com/civisanalytics/muffnn >`_
99
+ stacking_regressor regression `civismlext.StackedRegressor <https://github.com/civisanalytics/civisml-extensions >`_
100
100
================================ ================ ================================================================================================================================== ==================================
101
101
102
102
The "stacking_classifier" model stacks
@@ -151,7 +151,7 @@ By default, CivisML pre-processes data using the
151
151
equal to the ``excluded_columns `` parameter. You can replace this
152
152
with your own ETL by creating an object of class
153
153
:class: `~sklearn.base.BaseEstimator ` and passing it as the ``etl ``
154
- parameter during training.
154
+ parameter during training.
155
155
156
156
By default, :class: `~civismlext.preprocessing.DataFrameETL `
157
157
automatically one-hot encodes all categorical columns in the
@@ -214,7 +214,7 @@ distributions:
214
214
+------------------------------------+--------------------+-----------------------------------------------------------------------------+
215
215
| | random_forest_classifier | | ``n_estimators `` | | ``criterion: ['gini', 'entropy'] `` |
216
216
| | random_forest_regressor | | ``min = 100, `` | | ``max_features: truncexpon(b=10., loc=.01, scale=1./10.11) `` |
217
- | | extra_trees_classifier | | ``max = 1000 `` | | ``max_depth: [1, 2, 3, 4, 6, 10, None ] `` |
217
+ | | extra_trees_classifier | | ``max = 1000 `` | | ``max_depth: [1, 2, 3, 4, 6, 10] `` |
218
218
| | extra_trees_regressor | | |
219
219
| | RF step in stacking_classifier | | |
220
220
| | RF step in stacking_regressor | | |
@@ -245,7 +245,7 @@ argument to :class:`~civis.ml.ModelPipeline` which will install the
245
245
dependencies in your runtime environment. VCS support is also enabled
246
246
(see `docs
247
247
<https://pip.pypa.io/en/stable/reference/pip_install/#vcs-support> `_.)
248
- Installing a remote git repository from, say, Github only requires passing the HTTPS
248
+ Installing a remote git repository from, say, Github only requires passing the HTTPS
249
249
URL in the form of, for example, ``git+https://github.com/scikit-learn/scikit-learn ``.
250
250
251
251
CivisML will run ``pip install [your package here] ``. We strongly encourage you to pin
@@ -270,11 +270,11 @@ A simple example of how to do this with API looks as follows
270
270
271
271
.. code-block :: python
272
272
273
-
273
+
274
274
import civis
275
275
password = ' abc123' # token copied from https://github.com/settings/tokens
276
276
username = ' user123' # Github username
277
- git_token_name = ' Github credential'
277
+ git_token_name = ' Github credential'
278
278
279
279
client = civis.APIClient()
280
280
credential = client.credentials.post(password = password,
0 commit comments