|
| 1 | +""" |
| 2 | +This module provides validation functions for evaluating LLM responses and determining if they should be replaced with Codex-generated alternatives. |
| 3 | +""" |
| 4 | + |
| 5 | +from __future__ import annotations |
| 6 | + |
| 7 | +from typing import ( |
| 8 | + Any, |
| 9 | + Callable, |
| 10 | + Dict, |
| 11 | + Optional, |
| 12 | + Protocol, |
| 13 | + Sequence, |
| 14 | + Union, |
| 15 | + cast, |
| 16 | + runtime_checkable, |
| 17 | +) |
| 18 | + |
| 19 | +from pydantic import BaseModel, ConfigDict, Field |
| 20 | + |
| 21 | +from cleanlab_codex.utils.errors import MissingDependencyError |
| 22 | +from cleanlab_codex.utils.prompt import default_format_prompt |
| 23 | + |
| 24 | + |
| 25 | +@runtime_checkable |
| 26 | +class TLM(Protocol): |
| 27 | + def get_trustworthiness_score( |
| 28 | + self, |
| 29 | + prompt: Union[str, Sequence[str]], |
| 30 | + response: Union[str, Sequence[str]], |
| 31 | + **kwargs: Any, |
| 32 | + ) -> Dict[str, Any]: ... |
| 33 | + |
| 34 | + def prompt( |
| 35 | + self, |
| 36 | + prompt: Union[str, Sequence[str]], |
| 37 | + /, |
| 38 | + **kwargs: Any, |
| 39 | + ) -> Dict[str, Any]: ... |
| 40 | + |
| 41 | + |
| 42 | +DEFAULT_FALLBACK_ANSWER: str = ( |
| 43 | + "Based on the available information, I cannot provide a complete answer to this question." |
| 44 | +) |
| 45 | +DEFAULT_FALLBACK_SIMILARITY_THRESHOLD: int = 70 |
| 46 | +DEFAULT_TRUSTWORTHINESS_THRESHOLD: float = 0.5 |
| 47 | + |
| 48 | +Query = str |
| 49 | +Context = str |
| 50 | +Prompt = str |
| 51 | + |
| 52 | + |
| 53 | +class BadResponseDetectionConfig(BaseModel): |
| 54 | + """Configuration for bad response detection functions.""" |
| 55 | + |
| 56 | + model_config = ConfigDict(arbitrary_types_allowed=True) |
| 57 | + |
| 58 | + # Fallback check config |
| 59 | + fallback_answer: str = Field( |
| 60 | + default=DEFAULT_FALLBACK_ANSWER, description="Known unhelpful response to compare against" |
| 61 | + ) |
| 62 | + fallback_similarity_threshold: int = Field( |
| 63 | + default=DEFAULT_FALLBACK_SIMILARITY_THRESHOLD, |
| 64 | + description="Fuzzy matching similarity threshold (0-100). Higher values mean responses must be more similar to fallback_answer to be considered bad.", |
| 65 | + ) |
| 66 | + |
| 67 | + # Untrustworthy check config |
| 68 | + trustworthiness_threshold: float = Field( |
| 69 | + default=DEFAULT_TRUSTWORTHINESS_THRESHOLD, |
| 70 | + description="Score threshold (0.0-1.0). Lower values allow less trustworthy responses.", |
| 71 | + ) |
| 72 | + format_prompt: Callable[[Query, Context], Prompt] = Field( |
| 73 | + default=default_format_prompt, |
| 74 | + description="Function to format (query, context) into a prompt string.", |
| 75 | + ) |
| 76 | + |
| 77 | + # Unhelpful check config |
| 78 | + unhelpfulness_confidence_threshold: Optional[float] = Field( |
| 79 | + default=None, |
| 80 | + description="Optional confidence threshold (0.0-1.0) for unhelpful classification.", |
| 81 | + ) |
| 82 | + |
| 83 | + # Shared config (for untrustworthiness and unhelpfulness checks) |
| 84 | + tlm: Optional[TLM] = Field( |
| 85 | + default=None, |
| 86 | + description="TLM model to use for evaluation (required for untrustworthiness and unhelpfulness checks).", |
| 87 | + ) |
| 88 | + |
| 89 | + |
| 90 | +DEFAULT_CONFIG = BadResponseDetectionConfig() |
| 91 | + |
| 92 | + |
| 93 | +def is_bad_response( |
| 94 | + response: str, |
| 95 | + *, |
| 96 | + context: Optional[str] = None, |
| 97 | + query: Optional[str] = None, |
| 98 | + config: Union[BadResponseDetectionConfig, Dict[str, Any]] = DEFAULT_CONFIG, |
| 99 | +) -> bool: |
| 100 | + """Run a series of checks to determine if a response is bad. |
| 101 | +
|
| 102 | + If any check detects an issue (i.e. fails), the function returns True, indicating the response is bad. |
| 103 | +
|
| 104 | + This function runs three possible validation checks: |
| 105 | + 1. **Fallback check**: Detects if response is too similar to a known fallback answer. |
| 106 | + 2. **Untrustworthy check**: Assesses response trustworthiness based on the given context and query. |
| 107 | + 3. **Unhelpful check**: Predicts if the response adequately answers the query or not, in a useful way. |
| 108 | +
|
| 109 | + Note: |
| 110 | + Each validation check runs conditionally based on whether the required arguments are provided. |
| 111 | + As soon as any validation check fails, the function returns True. |
| 112 | +
|
| 113 | + Args: |
| 114 | + response: The response to check. |
| 115 | + context: Optional context/documents used for answering. Required for untrustworthy check. |
| 116 | + query: Optional user question. Required for untrustworthy and unhelpful checks. |
| 117 | + config: Optional, typed dictionary of configuration parameters. See <_BadReponseConfig> for details. |
| 118 | +
|
| 119 | + Returns: |
| 120 | + bool: True if any validation check fails, False if all pass. |
| 121 | + """ |
| 122 | + config = BadResponseDetectionConfig.model_validate(config) |
| 123 | + |
| 124 | + validation_checks: list[Callable[[], bool]] = [] |
| 125 | + |
| 126 | + # All required inputs are available for checking fallback responses |
| 127 | + validation_checks.append( |
| 128 | + lambda: is_fallback_response( |
| 129 | + response, |
| 130 | + config.fallback_answer, |
| 131 | + threshold=config.fallback_similarity_threshold, |
| 132 | + ) |
| 133 | + ) |
| 134 | + |
| 135 | + can_run_untrustworthy_check = query is not None and context is not None and config.tlm is not None |
| 136 | + if can_run_untrustworthy_check: |
| 137 | + # The if condition guarantees these are not None |
| 138 | + validation_checks.append( |
| 139 | + lambda: is_untrustworthy_response( |
| 140 | + response=response, |
| 141 | + context=cast(str, context), |
| 142 | + query=cast(str, query), |
| 143 | + tlm=cast(TLM, config.tlm), |
| 144 | + trustworthiness_threshold=config.trustworthiness_threshold, |
| 145 | + format_prompt=config.format_prompt, |
| 146 | + ) |
| 147 | + ) |
| 148 | + |
| 149 | + can_run_unhelpful_check = query is not None and config.tlm is not None |
| 150 | + if can_run_unhelpful_check: |
| 151 | + validation_checks.append( |
| 152 | + lambda: is_unhelpful_response( |
| 153 | + response=response, |
| 154 | + query=cast(str, query), |
| 155 | + tlm=cast(TLM, config.tlm), |
| 156 | + trustworthiness_score_threshold=cast(float, config.unhelpfulness_confidence_threshold), |
| 157 | + ) |
| 158 | + ) |
| 159 | + |
| 160 | + return any(check() for check in validation_checks) |
| 161 | + |
| 162 | + |
| 163 | +def is_fallback_response( |
| 164 | + response: str, |
| 165 | + fallback_answer: str = DEFAULT_FALLBACK_ANSWER, |
| 166 | + threshold: int = DEFAULT_FALLBACK_SIMILARITY_THRESHOLD, |
| 167 | +) -> bool: |
| 168 | + """Check if a response is too similar to a known fallback answer. |
| 169 | +
|
| 170 | + Uses fuzzy string matching to compare the response against a known fallback answer. |
| 171 | + Returns True if the response is similar enough to be considered unhelpful. |
| 172 | +
|
| 173 | + Args: |
| 174 | + response: The response to check. |
| 175 | + fallback_answer: A known unhelpful/fallback response to compare against. |
| 176 | + threshold: Similarity threshold (0-100). Higher values require more similarity. |
| 177 | + Default 70 means responses that are 70% or more similar are considered bad. |
| 178 | +
|
| 179 | + Returns: |
| 180 | + bool: True if the response is too similar to the fallback answer, False otherwise |
| 181 | + """ |
| 182 | + try: |
| 183 | + from thefuzz import fuzz # type: ignore |
| 184 | + except ImportError as e: |
| 185 | + raise MissingDependencyError( |
| 186 | + import_name=e.name or "thefuzz", |
| 187 | + package_url="https://github.com/seatgeek/thefuzz", |
| 188 | + ) from e |
| 189 | + |
| 190 | + partial_ratio: int = fuzz.partial_ratio(fallback_answer.lower(), response.lower()) |
| 191 | + return bool(partial_ratio >= threshold) |
| 192 | + |
| 193 | + |
| 194 | +def is_untrustworthy_response( |
| 195 | + response: str, |
| 196 | + context: str, |
| 197 | + query: str, |
| 198 | + tlm: TLM, |
| 199 | + trustworthiness_threshold: float = DEFAULT_TRUSTWORTHINESS_THRESHOLD, |
| 200 | + format_prompt: Callable[[str, str], str] = default_format_prompt, |
| 201 | +) -> bool: |
| 202 | + """Check if a response is untrustworthy. |
| 203 | +
|
| 204 | + Uses TLM to evaluate whether a response is trustworthy given the context and query. |
| 205 | + Returns True if TLM's trustworthiness score falls below the threshold, indicating |
| 206 | + the response may be incorrect or unreliable. |
| 207 | +
|
| 208 | + Args: |
| 209 | + response: The response to check from the assistant |
| 210 | + context: The context information available for answering the query |
| 211 | + query: The user's question or request |
| 212 | + tlm: The TLM model to use for evaluation |
| 213 | + trustworthiness_threshold: Score threshold (0.0-1.0). Lower values allow less trustworthy responses. |
| 214 | + Default 0.5, meaning responses with scores less than 0.5 are considered untrustworthy. |
| 215 | + format_prompt: Function that takes (query, context) and returns a formatted prompt string. |
| 216 | + Users should provide their RAG app's own prompt formatting function here |
| 217 | + to match how their LLM is prompted. |
| 218 | +
|
| 219 | + Returns: |
| 220 | + bool: True if the response is deemed untrustworthy by TLM, False otherwise |
| 221 | + """ |
| 222 | + try: |
| 223 | + from cleanlab_studio import Studio # type: ignore[import-untyped] # noqa: F401 |
| 224 | + except ImportError as e: |
| 225 | + raise MissingDependencyError( |
| 226 | + import_name=e.name or "cleanlab_studio", |
| 227 | + package_name="cleanlab-studio", |
| 228 | + package_url="https://github.com/cleanlab/cleanlab-studio", |
| 229 | + ) from e |
| 230 | + |
| 231 | + prompt = format_prompt(query, context) |
| 232 | + result = tlm.get_trustworthiness_score(prompt, response) |
| 233 | + score: float = result["trustworthiness_score"] |
| 234 | + return score < trustworthiness_threshold |
| 235 | + |
| 236 | + |
| 237 | +def is_unhelpful_response( |
| 238 | + response: str, |
| 239 | + query: str, |
| 240 | + tlm: TLM, |
| 241 | + trustworthiness_score_threshold: Optional[float] = None, |
| 242 | +) -> bool: |
| 243 | + """Check if a response is unhelpful by asking TLM to evaluate it. |
| 244 | +
|
| 245 | + Uses TLM to evaluate whether a response is helpful by asking it to make a Yes/No judgment. |
| 246 | + The evaluation considers both the TLM's binary classification of helpfulness and its |
| 247 | + confidence score. Returns True only if TLM classifies the response as unhelpful AND |
| 248 | + is sufficiently confident in that assessment (if a threshold is provided). |
| 249 | +
|
| 250 | + Args: |
| 251 | + response: The response to check |
| 252 | + query: User query that will be used to evaluate if the response is helpful |
| 253 | + tlm: The TLM model to use for evaluation |
| 254 | + trustworthiness_score_threshold: Optional confidence threshold (0.0-1.0) |
| 255 | + If provided and the response is marked as unhelpful, |
| 256 | + the confidence score must exceed this threshold for |
| 257 | + the response to be considered truly unhelpful. |
| 258 | +
|
| 259 | + Returns: |
| 260 | + bool: True if TLM determines the response is unhelpful with sufficient confidence, |
| 261 | + False otherwise |
| 262 | + """ |
| 263 | + try: |
| 264 | + from cleanlab_studio import Studio # noqa: F401 |
| 265 | + except ImportError as e: |
| 266 | + raise MissingDependencyError( |
| 267 | + import_name=e.name or "cleanlab_studio", |
| 268 | + package_name="cleanlab-studio", |
| 269 | + package_url="https://github.com/cleanlab/cleanlab-studio", |
| 270 | + ) from e |
| 271 | + |
| 272 | + # If editing `question`, make sure `expected_unhelpful_response` is still correct: |
| 273 | + # - When asking "is helpful?" -> "no" means unhelpful |
| 274 | + # - When asking "is unhelpful?" -> "yes" means unhelpful |
| 275 | + question = ( |
| 276 | + "Does the AI Assistant Response seem unhelpful? " |
| 277 | + "Things that are not helpful include answers that:\n" |
| 278 | + "- Are not useful, incomplete, incorrect, uncertain or unclear.\n" |
| 279 | + "- Abstain or refuse to answer the question\n" |
| 280 | + "- Statements which are similar to 'I don't know', 'Sorry', or 'No information available'.\n" |
| 281 | + "- Leave the original question unresolved\n" |
| 282 | + "- Are irrelevant to the question\n" |
| 283 | + "Answer Yes/No only." |
| 284 | + ) |
| 285 | + expected_unhelpful_response = "yes" |
| 286 | + |
| 287 | + prompt = ( |
| 288 | + "Consider the following User Query and AI Assistant Response.\n\n" |
| 289 | + f"User Query: {query}\n\n" |
| 290 | + f"AI Assistant Response: {response}\n\n" |
| 291 | + f"{question}" |
| 292 | + ) |
| 293 | + |
| 294 | + output = tlm.prompt(prompt, constrain_outputs=["Yes", "No"]) |
| 295 | + response_marked_unhelpful = output["response"].lower() == expected_unhelpful_response |
| 296 | + is_trustworthy = trustworthiness_score_threshold is None or ( |
| 297 | + output["trustworthiness_score"] > trustworthiness_score_threshold |
| 298 | + ) |
| 299 | + return response_marked_unhelpful and is_trustworthy |
0 commit comments