diff --git a/src/appmixer/ai/gemini/AIAgent/AIAgent.js b/src/appmixer/ai/gemini/AIAgent/AIAgent.js new file mode 100644 index 000000000..837eff15b --- /dev/null +++ b/src/appmixer/ai/gemini/AIAgent/AIAgent.js @@ -0,0 +1,128 @@ +'use strict'; + +const { GoogleGenerativeAI } = require('@google/generative-ai'); + +const lib = require('../lib'); + +const COLLECT_TOOL_OUTPUTS_POLL_TIMEOUT = 60 * 1000; // 60 seconds +const COLLECT_TOOL_OUTPUTS_POLL_INTERVAL = 1 * 1000; // 1 second + +module.exports = { + + start: async function(context) { + + try { + const tools = lib.getConnectedToolStartComponents(context.componentId, context.flowDescriptor); + const functionDeclarations = lib.getFunctionDeclarations(tools); + return context.stateSet('functionDeclarations', functionDeclarations); + } catch (error) { + throw new context.CancelError(error); + } + }, + + receive: async function(context) { + + const { prompt, model, instructions } = context.messages.in.content; + const threadId = context.messages.in.content.threadId; + const correlationId = context.messages.in.correlationId; + + const genAI = new GoogleGenerativeAI(context.auth.apiKey); + const params = { + model, + systemInstruction: instructions || 'You are a helpful assistant. If you detect you cannot use any tool, always reply directly as if no tools were given to you.' + }; + const functionDeclarations = await context.stateGet('functionDeclarations'); + if (functionDeclarations && functionDeclarations.length) { + params.tools = { functionDeclarations }; + params.functionCallingConfig = { + mode: 'AUTO' // Options: 'AUTO', 'ANY', 'NONE' + }; + } + + const client = genAI.getGenerativeModel(params); + + const messages = threadId ? await context.stateGet(`history:${threadId}`) || [] : []; + messages.push({ role: 'user', parts: [{ text: prompt }] }); + if (threadId) { + await context.stateSet(`history:${threadId}`, messages); + } + + while (true) { + + await context.log({ step: 'turn', messages }); + + const result = await client.generateContent({ contents: messages }); + + let functionCalls = result.response.functionCalls(); + if (functionCalls && functionCalls.length) { + + messages.push({ role: 'model', parts: functionCalls.map(call => ({ functionCall: call })) }); + + await context.log({ step: 'function-calls', message: `AI requested ${functionCalls.length} function(s) in parallel`, functionCalls }); + + const calls = []; + for (const call of functionCalls) { + const componentId = call.name.split('_')[1]; + const callId = `${call.name}:${correlationId}`; + calls.push({ componentId, args: call.args, id: callId, name: call.name }); + } + + // Send to all tools. Each ai.ToolStart ignores tool calls that are not intended for it. + await context.sendJson({ toolCalls: calls, prompt }, 'tools'); + + // Output of each tool is expected to be stored in the service state + // under the ID of the tool call. This is done in the ToolStartOutput component. + // Collect outputs of all the required tool calls. + await context.log({ step: 'collect-tools-output', threadId }); + const outputs = []; + const pollStart = Date.now(); + while ( + (outputs.length < calls.length) && + (Date.now() - pollStart < COLLECT_TOOL_OUTPUTS_POLL_TIMEOUT) + ) { + for (const call of calls) { + const result = await context.flow.stateGet(call.id); + if (result) { + outputs.push({ name: call.name, output: result.output }); + await context.flow.stateUnset(call.id); + } + } + // Sleep. + await new Promise((resolve) => setTimeout(resolve, COLLECT_TOOL_OUTPUTS_POLL_INTERVAL)); + } + await context.log({ step: 'collected-tools-output', threadId, outputs }); + + // Submit tool outputs to the assistant. + if (outputs && outputs.length) { + await context.log({ step: 'tool-outputs', tools: calls, outputs }); + // Send all function results back to the AI. + messages.push( + ...outputs.map(({ name, output }) => ({ + role: 'user', + parts: [{ functionResponse: { + name, + response: { + name, + content: output + } + } }] + })) + ); + + } else { + await context.log({ step: 'no-tool-outputs', tools: toolCalls }); + } + } else { + // Final answer, no more function calls. + + const answer = result.response.text(); + messages.push({ role: 'model', parts: [{ text: answer }] }); + + if (threadId) { + await context.stateSet(`history:${threadId}`, messages); + } + return context.sendJson({ answer, prompt }, 'out'); + } + } + } +}; diff --git a/src/appmixer/ai/gemini/AIAgent/component.json b/src/appmixer/ai/gemini/AIAgent/component.json new file mode 100644 index 000000000..fdab60bf4 --- /dev/null +++ b/src/appmixer/ai/gemini/AIAgent/component.json @@ -0,0 +1,75 @@ +{ + "name": "appmixer.ai.gemini.AIAgent", + "author": "Appmixer ", + "description": "Build an AI agent responding with contextual answers or performing contextual actions.", + "auth": { + "service": "appmixer:ai:gemini" + }, + "inPorts": [{ + "name": "in", + "schema": { + "type": "object", + "properties": { + "model": { "type": "string" }, + "instructions": { "type": "string", "maxLength": 256000 }, + "prompt": { "type": "string" }, + "threadId": { "type": "string" } + }, + "required": ["prompt"] + }, + "inspector": { + "inputs": { + "model": { + "type": "text", + "index": 1, + "label": "Model", + "tooltip": "ID of the model to use.", + "defaultValue": "gemini-2.0-flash", + "source": { + "url": "/component/appmixer/ai/gemini/ListModels?outPort=out", + "data": { + "transform": "./ListModels#toSelectOptions" + } + } + }, + "instructions": { + "type": "textarea", + "label": "Instructions", + "index": 2, + "tooltip": "The system instructions that the assistant uses. The maximum length is 256,000 characters. For example 'You are a personal math tutor.'." + }, + "prompt": { + "label": "Prompt", + "type": "textarea", + "index": 3 + }, + "threadId": { + "label": "Thread ID", + "type": "text", + "index": 4, + "tooltip": "By setting a thread ID you can keep the context of the conversation." + } + } + } + }], + "outPorts": [{ + "name": "out", + "options": [{ + "label": "Answer", + "value": "answer", + "schema": { "type": "string" } + }, { + "label": "Prompt", + "value": "prompt", + "schema": { "type": "string" } + }] + }, { + "name": "tools", + "options": [{ + "label": "Prompt", + "value": "prompt", + "schema": { "type": "string" } + }] + }], + "icon": "" +} diff --git a/src/appmixer/ai/gemini/AIAgent/icon.svg b/src/appmixer/ai/gemini/AIAgent/icon.svg new file mode 100644 index 000000000..640f610a1 --- /dev/null +++ b/src/appmixer/ai/gemini/AIAgent/icon.svg @@ -0,0 +1,15 @@ + + + + + + + + + + + + + + + diff --git a/src/appmixer/ai/gemini/GenerateEmbeddings/GenerateEmbeddings.js b/src/appmixer/ai/gemini/GenerateEmbeddings/GenerateEmbeddings.js new file mode 100644 index 000000000..eea4050a8 --- /dev/null +++ b/src/appmixer/ai/gemini/GenerateEmbeddings/GenerateEmbeddings.js @@ -0,0 +1,17 @@ +'use strict'; + +const lib = require('../lib'); + +module.exports = { + + receive: async function(context) { + + const config = { + apiKey: context.auth.apiKey, + baseURL: 'https://generativelanguage.googleapis.com/v1beta/openai/' + }; + + const out = await lib.generateEmbeddings(context, config, context.messages.in.content); + return context.sendJson(out, 'out'); + } +}; diff --git a/src/appmixer/ai/gemini/GenerateEmbeddings/component.json b/src/appmixer/ai/gemini/GenerateEmbeddings/component.json new file mode 100644 index 000000000..76903645a --- /dev/null +++ b/src/appmixer/ai/gemini/GenerateEmbeddings/component.json @@ -0,0 +1,89 @@ +{ + "name": "appmixer.ai.gemini.GenerateEmbeddings", + "author": "Appmixer ", + "description": "Generate embeddings for text data. The text is split into chunks and embedding is returned for each chunk.
The returned embeddings is an array of the form: [{ \"index\": 0, \"text\": \"chunk1\", \"vector\": [1.1, 1.2, 1.3] }].
TIP: use the JSONata modifier to convert the embeddings array into custom formats. For convenience, the component also returns the first vector in the embeddings array which is useful when querying vector databases to find relevant chunks.", + "auth": { + "service": "appmixer:ai:gemini" + }, + "inPorts": [{ + "name": "in", + "schema": { + "type": "object", + "properties": { + "text": { "type": "string", "maxLength": 512000 }, + "model": { "type": "string" }, + "chunkSize": { "type": "integer" }, + "chunkOverlap": { "type": "integer" } + } + }, + "inspector": { + "inputs": { + "text": { + "type": "textarea", + "label": "Text", + "tooltip": "Enter the text to generate embeddings for. The text will be split into chunks and embeddings will be generated for each chunk. The maximum length is 512,000 characters. If you need more than 512,000 characters, use the 'Generate Embeddings From File' component.", + "index": 1 + }, + "model": { + "type": "text", + "index": 2, + "label": "Model", + "tooltip": "ID of the model to use.", + "defaultValue": "text-embedding-004", + "source": { + "url": "/component/appmixer/ai/gemini/ListModels?outPort=out", + "data": { + "transform": "./ListModels#toSelectOptions" + } + } + }, + "chunkSize": { + "type": "number", + "label": "Chunk Size", + "defaultValue": 500, + "tooltip": "Maximum size of each chunk for text splitting. The default is 500.", + "index": 3 + }, + "chunkOverlap": { + "type": "number", + "label": "Chunk Overlap", + "defaultValue": 50, + "tooltip": "Overlap between chunks for text splitting to maintain context. The default is 50.", + "index": 4 + } + } + } + }], + "outPorts": [{ + "name": "out", + "options": [{ + "label": "Embeddings", + "value": "embeddings", + "schema": { + "type": "array", + "items": { + "type": "object", + "properties": { + "index": { "type": "string" }, + "vector": { "type": "array", "items": { "type": "number" } }, + "text": { "type": "string" } + } + }, + "examples": [ + [{ "index": 0, "text": "chunk1", "vector": [1.1, 1.2, 1.3] }, { "index": 1, "text": "chunk2", "vector": [2.1, 2.2, 2.3] }] + ] + } + }, { + "label": "First Vector", + "value": "firstVector", + "schema": { + "type": "array", + "items": { "type": "number" }, + "examples": [ + [-0.0120379254, -0.0376950279, -0.0133513855, -0.0365983546, -0.0247007012, 0.0158507861, -0.0143460445, 0.00486809108] + ] + } + }] + }], + "icon": "" +} diff --git a/src/appmixer/ai/gemini/GenerateEmbeddingsFromFile/GenerateEmbeddingsFromFile.js b/src/appmixer/ai/gemini/GenerateEmbeddingsFromFile/GenerateEmbeddingsFromFile.js new file mode 100644 index 000000000..daf67bf4e --- /dev/null +++ b/src/appmixer/ai/gemini/GenerateEmbeddingsFromFile/GenerateEmbeddingsFromFile.js @@ -0,0 +1,18 @@ +'use strict'; + +const lib = require('../lib'); + +module.exports = { + + receive: async function(context) { + + const config = { + apiKey: context.auth.apiKey, + baseURL: 'https://generativelanguage.googleapis.com/v1beta/openai/' + }; + + await lib.generateEmbeddingsFromFile(context, config, context.messages.in.content, (out) => { + return context.sendJson(out, 'out'); + }); + } +}; diff --git a/src/appmixer/ai/gemini/GenerateEmbeddingsFromFile/component.json b/src/appmixer/ai/gemini/GenerateEmbeddingsFromFile/component.json new file mode 100644 index 000000000..09cae7d26 --- /dev/null +++ b/src/appmixer/ai/gemini/GenerateEmbeddingsFromFile/component.json @@ -0,0 +1,90 @@ +{ + "name": "appmixer.ai.gemini.GenerateEmbeddingsFromFile", + "author": "Appmixer ", + "description": "Generate embeddings for a text file. The text is split into parts, each part is split into chunks and embedding is returned for each chunk. The component emits embeddings array for each file part (1MB).
The returned embeddings is an array of the form: [{ \"index\": 0, \"text\": \"chunk1\", \"vector\": [1.1, 1.2, 1.3] }].
TIP: use the JSONata modifier to convert the embeddings array into custom formats.", + "auth": { + "service": "appmixer:ai:gemini" + }, + "inPorts": [{ + "name": "in", + "schema": { + "type": "object", + "properties": { + "fileId": { "type": "string" }, + "model": { "type": "string" }, + "chunkSize": { "type": "integer" }, + "chunkOverlap": { "type": "integer" }, + "embeddingTemplate": { "type": "string" } + } + }, + "inspector": { + "inputs": { + "fileId": { + "label": "File ID", + "type": "filepicker", + "index": 1, + "tooltip": "The text file to generate embeddings for. Use plain text or CSV files only." + }, + "model": { + "type": "text", + "index": 2, + "label": "Model", + "tooltip": "ID of the model to use.", + "defaultValue": "text-embedding-004", + "source": { + "url": "/component/appmixer/ai/gemini/ListModels?outPort=out", + "data": { + "transform": "./ListModels#toSelectOptions" + } + } + }, + "chunkSize": { + "type": "number", + "label": "Chunk Size", + "defaultValue": 500, + "tooltip": "Maximum size of each chunk for text splitting. The default is 500.", + "index": 3 + }, + "chunkOverlap": { + "type": "number", + "label": "Chunk Overlap", + "defaultValue": 50, + "tooltip": "Overlap between chunks for text splitting to maintain context. The default is 50.", + "index": 4 + } + } + } + }], + "outPorts": [{ + "name": "out", + "options": [{ + "label": "Embeddings", + "value": "embeddings", + "schema": { + "type": "array", + "items": { + "type": "object", + "properties": { + "index": { "type": "string" }, + "vector": { "type": "array", "items": { "type": "number" } }, + "text": { "type": "string" } + } + }, + "examples": [ + [{ "index": 0, "text": "chunk1", "vector": [1.1, 1.2, 1.3] }, { "index": 1, "text": "chunk2", "vector": [2.1, 2.2, 2.3] }] + ] + } + }, { + "label": "First Vector", + "value": "firstVector", + "schema": { + "type": "array", + "items": { "type": "number" }, + "examples": [ + [-0.0120379254, -0.0376950279, -0.0133513855, -0.0365983546, -0.0247007012, 0.0158507861, -0.0143460445, 0.00486809108] + ] + } + }] + }], + "icon": "" +} diff --git a/src/appmixer/ai/gemini/ListModels/ListModels.js b/src/appmixer/ai/gemini/ListModels/ListModels.js new file mode 100644 index 000000000..20c95319c --- /dev/null +++ b/src/appmixer/ai/gemini/ListModels/ListModels.js @@ -0,0 +1,23 @@ +'use strict'; + +const lib = require('../lib'); + +module.exports = { + + receive: async function(context) { + + const apiKey = context.auth.apiKey; + const url = 'https://generativelanguage.googleapis.com/v1beta/models'; + const { data } = await context.httpRequest.get(url + `?key=${apiKey}`); + return context.sendJson(data, 'out'); + }, + + toSelectOptions(out) { + return out.models.map(model => { + return { + label: lib.extractBaseModelId(model.name), + value: lib.extractBaseModelId(model.name) + }; + }); + } +}; diff --git a/src/appmixer/ai/gemini/ListModels/component.json b/src/appmixer/ai/gemini/ListModels/component.json new file mode 100644 index 000000000..5a8ed61fb --- /dev/null +++ b/src/appmixer/ai/gemini/ListModels/component.json @@ -0,0 +1,73 @@ +{ + "name": "appmixer.ai.gemini.ListModels", + "author": "Appmixer ", + "description": "List models.", + "auth": { + "service": "appmixer:ai:gemini" + }, + "inPorts": [{ + "name": "in" + }], + "outPorts": [{ + "name": "out", + "options": [{ + "label": "Models", + "value": "models", + "schema": { + "type": "array", + "items": { + "type": "object", + "properties": { + "name": { + "type": "string" + }, + "baseModelId": { + "type": "string" + }, + "version": { + "type": "string" + }, + "displayName": { + "type": "string" + }, + "description": { + "type": "string" + }, + "inputTokenLimit": { + "type": "integer", + "minimum": 0 + }, + "outputTokenLimit": { + "type": "integer", + "minimum": 0 + }, + "supportedGenerationMethods": { + "type": "array", + "items": { + "type": "string" + }, + "minItems": 1 + }, + "temperature": { + "type": "number", + "minimum": 0.0 + }, + "maxTemperature": { + "type": "number", + "minimum": 0.0 + }, + "topP": { + "type": "number", + "minimum": 0.0, + "maximum": 1.0 + }, + "topK": { + "type": "integer", + "minimum": 0 + } + } + } + }}] + }], + "icon": "" + } diff --git a/src/appmixer/ai/gemini/SendPrompt/SendPrompt.js b/src/appmixer/ai/gemini/SendPrompt/SendPrompt.js new file mode 100644 index 000000000..9efd29066 --- /dev/null +++ b/src/appmixer/ai/gemini/SendPrompt/SendPrompt.js @@ -0,0 +1,16 @@ +'use strict'; + +const lib = require('../lib'); + +module.exports = { + + receive: async function(context) { + + const config = { + apiKey: context.auth.apiKey, + baseURL: 'https://generativelanguage.googleapis.com/v1beta/openai/' + }; + const answer = await lib.sendPrompt(config, context.messages.in.content); + return context.sendJson({ answer, prompt: context.messages.in.content.prompt }, 'out'); + } +}; diff --git a/src/appmixer/ai/gemini/SendPrompt/component.json b/src/appmixer/ai/gemini/SendPrompt/component.json new file mode 100644 index 000000000..fe496a315 --- /dev/null +++ b/src/appmixer/ai/gemini/SendPrompt/component.json @@ -0,0 +1,54 @@ +{ + "name": "appmixer.ai.gemini.SendPrompt", + "author": "Appmixer ", + "description": "Send a prompt to the Gemini LLM and receive a response.", + "auth": { + "service": "appmixer:ai:gemini" + }, + "inPorts": [{ + "name": "in", + "schema": { + "type": "object", + "properties": { + "prompt": { "type": "string" }, + "model": { "type": "string" } + }, + "required": ["prompt"] + }, + "inspector": { + "inputs": { + "prompt": { + "label": "Prompt", + "type": "textarea", + "index": 1 + }, + "model": { + "type": "text", + "index": 2, + "label": "Model", + "tooltip": "ID of the model to use.", + "defaultValue": "gemini-1.5-flash", + "source": { + "url": "/component/appmixer/ai/gemini/ListModels?outPort=out", + "data": { + "transform": "./ListModels#toSelectOptions" + } + } + } + } + } + }], + "outPorts": [{ + "name": "out", + "options": [{ + "label": "Answer", + "value": "answer", + "schema": { "type": "string" } + }, { + "label": "Prompt", + "value": "prompt", + "schema": { "type": "string" } + }] + }], + "icon": "" +} diff --git a/src/appmixer/ai/gemini/TransformTextToJSON/TransformTextToJSON.js b/src/appmixer/ai/gemini/TransformTextToJSON/TransformTextToJSON.js new file mode 100644 index 000000000..c2738390e --- /dev/null +++ b/src/appmixer/ai/gemini/TransformTextToJSON/TransformTextToJSON.js @@ -0,0 +1,40 @@ +'use strict'; + +const lib = require('../lib'); + +module.exports = { + + receive: async function(context) { + + const { text, jsonSchema: jsonSchemaString, model } = context.messages.in.content; + + const jsonSchema = JSON.parse(jsonSchemaString); + + if (context.properties.generateOutputPortOptions) { + return this.getOutputPortOptions(context, jsonSchema); + } + + const config = { + apiKey: context.auth.apiKey, + baseURL: 'https://generativelanguage.googleapis.com/v1beta/openai/' + }; + const json = await lib.transformTextToJSON(config, { prompt: text, jsonSchema, model }); + return context.sendJson({ json }, 'out'); + }, + + getOutputPortOptions: function(context, jsonSchema) { + + return context.sendJson([ + { + value: 'json', + label: 'JSON', + schema: jsonSchema + }, + { + value: 'text', + label: 'Text', + schema: { type: 'string' } + } + ], 'out'); + } +}; diff --git a/src/appmixer/ai/gemini/TransformTextToJSON/component.json b/src/appmixer/ai/gemini/TransformTextToJSON/component.json new file mode 100644 index 000000000..308e3e567 --- /dev/null +++ b/src/appmixer/ai/gemini/TransformTextToJSON/component.json @@ -0,0 +1,65 @@ +{ + "name": "appmixer.ai.gemini.TransformTextToJSON", + "author": "Appmixer ", + "description": "Extract structured JSON data from text using AI.", + "auth": { + "service": "appmixer:ai:gemini" + }, + "inPorts": [{ + "name": "in", + "schema": { + "type": "object", + "properties": { + "text": { "type": "string" }, + "jsonSchema": { "type": "string" }, + "model": { "type": "string" } + }, + "required": ["text", "jsonSchema"] + }, + "inspector": { + "inputs": { + "text": { + "label": "Text", + "type": "textarea", + "index": 1, + "tooltip": "The text from which to extract structured JSON data. Example: John is 25 years old.." + }, + "jsonSchema": { + "label": "Output JSON Schema", + "type": "textarea", + "index": 2, + "tooltip": "The schema that defines the structure of the output JSON. Use JSON Schema format. Example: {\"type\":\"object\",\"properties\":{\"name\":{\"type\":\"string\"}, \"age\":{\"type\":\"number\"}}}. It must be a valid JSON schema and must be of \"type\": \"object\". If you want to produce an array, you can nest the array under an object property of type array. Example: {\"type\":\"object\",\"properties\":{\"contacts\":{\"type\":\"array\",\"items\":{\"type\":\"object\",\"properties\":{\"name\":{\"type\":\"string\"},\"age\":{\"type\":\"number\"}}}}}}." + }, + "model": { + "type": "text", + "index": 3, + "label": "Model", + "tooltip": "ID of the model to use.", + "defaultValue": "gemini-1.5-flash", + "source": { + "url": "/component/appmixer/ai/gemini/ListModels?outPort=out", + "data": { + "transform": "./ListModels#toSelectOptions" + } + } + } + } + } + }], + "outPorts": [{ + "name": "out", + "source": { + "url": "/component/appmixer/ai/gemini/TransformTextToJSON?outPort=out", + "data": { + "properties": { + "generateOutputPortOptions": true + }, + "messages": { + "in/text": "dummy", + "in/jsonSchema": "inputs/in/jsonSchema" + } + } + } + }], + "icon": "" +} diff --git a/src/appmixer/ai/gemini/auth.js b/src/appmixer/ai/gemini/auth.js new file mode 100644 index 000000000..e84cd316d --- /dev/null +++ b/src/appmixer/ai/gemini/auth.js @@ -0,0 +1,30 @@ +'use strict'; + +module.exports = { + + type: 'apiKey', + + definition: () => { + + return { + auth: { + apiKey: { + type: 'text', + name: 'API Key', + tooltip: 'Log into your Google Console account and create an API key for the Gemini API.' + } + }, + + validate: async (context) => { + + const url = 'https://generativelanguage.googleapis.com/v1beta/models'; + return context.httpRequest.get(url + `?key=${context.apiKey}`); + }, + + accountNameFromProfileInfo: (context) => { + const apiKey = context.apiKey; + return apiKey.substr(0, 6) + '...' + apiKey.substr(-6); + } + }; + } +}; diff --git a/src/appmixer/ai/gemini/bundle.json b/src/appmixer/ai/gemini/bundle.json new file mode 100644 index 000000000..7ed341a56 --- /dev/null +++ b/src/appmixer/ai/gemini/bundle.json @@ -0,0 +1,9 @@ +{ + "name": "appmixer.ai.gemini", + "version": "1.0.0", + "changelog": { + "1.0.0": [ + "First version." + ] + } +} diff --git a/src/appmixer/ai/gemini/icon.svg b/src/appmixer/ai/gemini/icon.svg new file mode 100644 index 000000000..787c83710 --- /dev/null +++ b/src/appmixer/ai/gemini/icon.svg @@ -0,0 +1 @@ + \ No newline at end of file diff --git a/src/appmixer/ai/gemini/lib.js b/src/appmixer/ai/gemini/lib.js new file mode 100644 index 000000000..1b7938c9e --- /dev/null +++ b/src/appmixer/ai/gemini/lib.js @@ -0,0 +1,269 @@ +const { OpenAI } = require('openai'); +const { RecursiveCharacterTextSplitter } = require('langchain/text_splitter'); + +// See https://platform.openai.com/docs/api-reference/embeddings/create#embeddings-create-input. +const MAX_INPUT_LENGTH = 8192 * 4; // max 8192 tokens, 1 token ~ 4 characters. +const MAX_BATCH_SIZE = 2048; + +const FILE_PART_SIZE = 1024 * 1024; // 1MB + +module.exports = { + + extractBaseModelId: function(modelName) { + if (!modelName || typeof modelName !== 'string') { + throw new Error('Invalid model name.'); + } + + const match = modelName.split('/')[1]; + return match; + }, + + listModels: async function(config) { + + const client = new OpenAI(config); + const models = await client.models.list(); + return models; + }, + + /** + * @param {String} config.apiKey + * @param {String} config.baseUrl + * @param {String} input.model + * @param {String} input.prompt + * @returns String + */ + sendPrompt: async function(config, input) { + + const client = new OpenAI(config); + const completion = await client.chat.completions.create({ + model: input.model, + messages: [ + { role: 'system', content: input.instructions || 'You are a helpful assistant.' }, + { role: 'user', content: input.prompt } + ] + }); + return completion.choices[0].message.content; + }, + + /** + * @param {String} config.apiKey + * @param {String} config.baseUrl + * @param {String} input.model + * @param {String} input.prompt + * @param {String} input.jsonSchema + * @returns Object JSON object that follows the given JSON schema. + */ + transformTextToJSON: async function(config, input) { + + const client = new OpenAI(config); + const instructions = 'You are an expert at structured data extraction. You will be given unstructured text and should convert it into the given structure.'; + const completion = await client.chat.completions.create({ + model: input.model, + messages: [ + { role: 'system', content: input.instructions || instructions }, + { role: 'user', content: input.prompt } + ], + response_format: { + type: 'json_schema', + json_schema: { + name: 'json_extraction', + schema: input.jsonSchema + } + } + }); + const json = JSON.parse(completion.choices[0].message.content); + return json; + }, + + generateEmbeddingsFromFile: async function(context, config, input, outputFunction) { + + const { + fileId + } = input; + const client = new OpenAI(config); + + const readStream = await context.getFileReadStream(fileId); + const fileInfo = await context.getFileInfo(fileId); + await context.log({ step: 'split-file', message: 'Splitting file into parts.', partSize: FILE_PART_SIZE, fileInfo }); + let firstVector; + const partsStream = this.splitStream(readStream, FILE_PART_SIZE); + for await (const part of partsStream) { + const embeddings = await this.generateEmbeddings(context, client, part.toString()); + if (!firstVector) { + firstVector = embeddings[0].vector; + } + await outputFunction({ embeddings, firstVector }); + } + }, + + /** + * Generate embeddings for a text. + * @param {String} config.apiKey + * @param {String} config.baseUrl + * @param {String} input.text + * @param {String} input.model + * @param {Number} input.chunkSize + * @param {Number} input.chunkOverlap + * @returns Object { embeddings: Array{text:String, vector:Array, index: Integer}, firstVector: Array } + */ + generateEmbeddings: async function(context, config, input) { + + const client = new OpenAI(config); + const { + text, + model = 'text-embedding-ada-002', + chunkSize = 500, + chunkOverlap = 50 + } = input; + + const chunks = await this.splitText(text, chunkSize, chunkOverlap); + await context.log({ step: 'split-text', message: 'Text succesfully split into chunks.', chunksLength: chunks.length }); + + // Process chunks in batches. + // the batch size is calculated based on the chunk size and the maximum input length in + // order not to exceed the maximum input length defined in + // https://platform.openai.com/docs/api-reference/embeddings/create#embeddings-create-input + // We devide the maximum input length by 2 to stay on the safe side + // because the token to character ratio might not be accurate. + const batchSize = Math.min(Math.floor((MAX_INPUT_LENGTH / 2) / chunkSize), MAX_BATCH_SIZE); + const embeddings = []; + // For convenience, the GenerateEmbeddings component returns the first vector. + // This makes it easy to genereate embedding for a prompt and send it e.g. to the pinecone.QueryVectors component + // without having to apply modifiers to the embedding array returned. + let firstVector = null; + for (let i = 0; i < chunks.length; i += batchSize) { + const batch = chunks.slice(i, i + batchSize); + + const response = await client.embeddings.create({ + model, + input: batch, + encoding_format: 'float' + }); + + // Collect embeddings for the current batch. + response.data.forEach((item, index) => { + if (!firstVector) { + firstVector = item.embedding; + } + const embedding = { + text: batch[index], + vector: item.embedding, + index: i + index + }; + embeddings.push(embedding); + }); + } + return { embeddings, firstVector }; + }, + + splitText(text, chunkSize, chunkOverlap) { + + const splitter = new RecursiveCharacterTextSplitter({ + chunkSize, + chunkOverlap + }); + return splitter.splitText(text); + }, + + /** + * Splits a readable stream into chunks of n bytes. + * @param {Readable} inputStream - The readable stream to split. + * @param {number} chunkSize - Size of each chunk in bytes. + * @returns {Readable} - A readable stream emitting chunks. + */ + splitStream: function(inputStream, chunkSize) { + + let leftover = Buffer.alloc(0); + + const transformStream = new Transform({ + transform(chunk, encoding, callback) { + // Combine leftover buffer with the new chunk + const combined = Buffer.concat([leftover, chunk]); + const combinedLength = combined.length; + + // Emit chunks of the desired size + let offset = 0; + while (offset + chunkSize <= combinedLength) { + this.push(combined.slice(offset, offset + chunkSize)); + offset += chunkSize; + } + + // Store leftover data + leftover = combined.slice(offset); + + callback(); + }, + flush(callback) { + // Push any remaining data as the final chunk + if (leftover.length > 0) { + this.push(leftover); + } + callback(); + } + }); + + return inputStream.pipe(transformStream); + }, + + getConnectedToolStartComponents: function(agentComponentId, flowDescriptor) { + + const toolsPort = 'tools'; + + // Create a new assistant with tools defined in the branches connected to my 'tools' output port. + const tools = {}; + let error; + + // Find all components connected to my 'tools' output port. + Object.keys(flowDescriptor).forEach((componentId) => { + const component = flowDescriptor[componentId]; + const sources = component.source; + Object.keys(sources || {}).forEach((inPort) => { + const source = sources[inPort]; + if (source[agentComponentId] && source[agentComponentId].includes(toolsPort)) { + tools[componentId] = component; + if (component.type !== 'appmixer.ai.agenttools.ToolStart') { + error = `Component ${componentId} is not of type 'ToolStart' but ${component.type}. + Every tool chain connected to the '${toolsPort}' port of the AI Agent + must start with 'ToolStart' and end with 'ToolOutput'. + This is where you describe what the tool does and what parameters should the AI model provide to it.`; + } + } + }); + }); + + if (error) { + throw new Error(error); + } + return tools; + }, + + getFunctionDeclarations: function(tools) { + + const functionDeclarations = []; + + Object.keys(tools).forEach((componentId) => { + const component = tools[componentId]; + const parameters = component.config.properties.parameters?.ADD || []; + const functionParameters = { + type: 'object', + properties: {} + }; + parameters.forEach((parameter) => { + functionParameters.properties[parameter.name] = { + type: parameter.type, + description: parameter.description + }; + }); + const functionDeclaration = { + name: 'function_' + componentId, + description: component.config.properties.description + }; + if (parameters.length) { + functionDeclaration.parameters = functionParameters; + } + functionDeclarations.push(functionDeclaration); + }); + return functionDeclarations; + } + +}; diff --git a/src/appmixer/ai/gemini/module.json b/src/appmixer/ai/gemini/module.json new file mode 100644 index 000000000..d5fadf2ed --- /dev/null +++ b/src/appmixer/ai/gemini/module.json @@ -0,0 +1,10 @@ +{ + "name": "appmixer.ai.gemini", + "label": "Google Gemini", + "category": "ai", + "categoryIndex": 0, + "index": 1, + "categoryLabel": "AI", + "description": "Google Gemini components for building AI agents.", + "icon": "" +} diff --git a/src/appmixer/ai/gemini/package.json b/src/appmixer/ai/gemini/package.json new file mode 100644 index 000000000..c9c0939a8 --- /dev/null +++ b/src/appmixer/ai/gemini/package.json @@ -0,0 +1,9 @@ +{ + "name": "appmixer.ai.gemini", + "version": "1.0.0", + "dependencies": { + "@google/generative-ai": "0.22.0", + "langchain": "0.3.6", + "openai": "4.86.1" + } +}