This repository was archived by the owner on Dec 3, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathconsist_of.go
177 lines (151 loc) · 4.63 KB
/
consist_of.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
// untested sections: 3
package matchers
import (
"fmt"
"reflect"
"github.com/onsi/gomega/format"
"github.com/onsi/gomega/matchers/internal/miter"
"github.com/onsi/gomega/matchers/support/goraph/bipartitegraph"
)
type ConsistOfMatcher struct {
Elements []interface{}
missingElements []interface{}
extraElements []interface{}
}
func (matcher *ConsistOfMatcher) Match(actual interface{}) (success bool, err error) {
if !isArrayOrSlice(actual) && !isMap(actual) && !miter.IsIter(actual) {
return false, fmt.Errorf("ConsistOf matcher expects an array/slice/map/iter.Seq/iter.Seq2. Got:\n%s", format.Object(actual, 1))
}
matchers := matchers(matcher.Elements)
values := valuesOf(actual)
bipartiteGraph, err := bipartitegraph.NewBipartiteGraph(values, matchers, neighbours)
if err != nil {
return false, err
}
edges := bipartiteGraph.LargestMatching()
if len(edges) == len(values) && len(edges) == len(matchers) {
return true, nil
}
var missingMatchers []interface{}
matcher.extraElements, missingMatchers = bipartiteGraph.FreeLeftRight(edges)
matcher.missingElements = equalMatchersToElements(missingMatchers)
return false, nil
}
func neighbours(value, matcher interface{}) (bool, error) {
match, err := matcher.(omegaMatcher).Match(value)
return match && err == nil, nil
}
func equalMatchersToElements(matchers []interface{}) (elements []interface{}) {
for _, matcher := range matchers {
if equalMatcher, ok := matcher.(*EqualMatcher); ok {
elements = append(elements, equalMatcher.Expected)
} else if _, ok := matcher.(*BeNilMatcher); ok {
elements = append(elements, nil)
} else {
elements = append(elements, matcher)
}
}
return
}
func flatten(elems []interface{}) []interface{} {
if len(elems) != 1 ||
!(isArrayOrSlice(elems[0]) ||
(miter.IsIter(elems[0]) && !miter.IsSeq2(elems[0]))) {
return elems
}
if miter.IsIter(elems[0]) {
flattened := []any{}
miter.IterateV(elems[0], func(v reflect.Value) bool {
flattened = append(flattened, v.Interface())
return true
})
return flattened
}
value := reflect.ValueOf(elems[0])
flattened := make([]interface{}, value.Len())
for i := 0; i < value.Len(); i++ {
flattened[i] = value.Index(i).Interface()
}
return flattened
}
func matchers(expectedElems []interface{}) (matchers []interface{}) {
for _, e := range flatten(expectedElems) {
if e == nil {
matchers = append(matchers, &BeNilMatcher{})
} else if matcher, isMatcher := e.(omegaMatcher); isMatcher {
matchers = append(matchers, matcher)
} else {
matchers = append(matchers, &EqualMatcher{Expected: e})
}
}
return
}
func presentable(elems []interface{}) interface{} {
elems = flatten(elems)
if len(elems) == 0 {
return []interface{}{}
}
sv := reflect.ValueOf(elems)
firstEl := sv.Index(0)
if firstEl.IsNil() {
return elems
}
tt := firstEl.Elem().Type()
for i := 1; i < sv.Len(); i++ {
el := sv.Index(i)
if el.IsNil() || (sv.Index(i).Elem().Type() != tt) {
return elems
}
}
ss := reflect.MakeSlice(reflect.SliceOf(tt), sv.Len(), sv.Len())
for i := 0; i < sv.Len(); i++ {
ss.Index(i).Set(sv.Index(i).Elem())
}
return ss.Interface()
}
func valuesOf(actual interface{}) []interface{} {
value := reflect.ValueOf(actual)
values := []interface{}{}
if miter.IsIter(actual) {
if miter.IsSeq2(actual) {
miter.IterateKV(actual, func(k, v reflect.Value) bool {
values = append(values, v.Interface())
return true
})
} else {
miter.IterateV(actual, func(v reflect.Value) bool {
values = append(values, v.Interface())
return true
})
}
} else if isMap(actual) {
keys := value.MapKeys()
for i := 0; i < value.Len(); i++ {
values = append(values, value.MapIndex(keys[i]).Interface())
}
} else {
for i := 0; i < value.Len(); i++ {
values = append(values, value.Index(i).Interface())
}
}
return values
}
func (matcher *ConsistOfMatcher) FailureMessage(actual interface{}) (message string) {
message = format.Message(actual, "to consist of", presentable(matcher.Elements))
message = appendMissingElements(message, matcher.missingElements)
if len(matcher.extraElements) > 0 {
message = fmt.Sprintf("%s\nthe extra elements were\n%s", message,
format.Object(presentable(matcher.extraElements), 1))
}
return
}
func appendMissingElements(message string, missingElements []interface{}) string {
if len(missingElements) == 0 {
return message
}
return fmt.Sprintf("%s\nthe missing elements were\n%s", message,
format.Object(presentable(missingElements), 1))
}
func (matcher *ConsistOfMatcher) NegatedFailureMessage(actual interface{}) (message string) {
return format.Message(actual, "not to consist of", presentable(matcher.Elements))
}