This repository was archived by the owner on Sep 27, 2019. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 619
/
Copy pathrule_impls.cpp
1316 lines (1111 loc) · 48.7 KB
/
rule_impls.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
//===----------------------------------------------------------------------===//
//
// Peloton
//
// rule_impls.cpp
//
// Identification: src/optimizer/rule_impls.cpp
//
// Copyright (c) 2015-2018, Carnegie Mellon University Database Group
//
//===----------------------------------------------------------------------===//
#include <memory>
#include "catalog/column_catalog.h"
#include "catalog/index_catalog.h"
#include "catalog/table_catalog.h"
#include "optimizer/operators.h"
#include "optimizer/optimizer_metadata.h"
#include "optimizer/properties.h"
#include "optimizer/rule_impls.h"
#include "optimizer/util.h"
#include "storage/data_table.h"
namespace peloton {
namespace optimizer {
//===--------------------------------------------------------------------===//
// Transformation rules
//===--------------------------------------------------------------------===//
///////////////////////////////////////////////////////////////////////////////
/// InnerJoinCommutativity
InnerJoinCommutativity::InnerJoinCommutativity() {
type_ = RuleType::INNER_JOIN_COMMUTE;
std::shared_ptr<Pattern> left_child(std::make_shared<Pattern>(OpType::Leaf));
std::shared_ptr<Pattern> right_child(std::make_shared<Pattern>(OpType::Leaf));
match_pattern = std::make_shared<Pattern>(OpType::InnerJoin);
match_pattern->AddChild(left_child);
match_pattern->AddChild(right_child);
}
bool InnerJoinCommutativity::Check(std::shared_ptr<OperatorExpression> expr,
OptimizeContext *context) const {
(void)context;
(void)expr;
return true;
}
void InnerJoinCommutativity::Transform(
std::shared_ptr<OperatorExpression> input,
std::vector<std::shared_ptr<OperatorExpression>> &transformed,
UNUSED_ATTRIBUTE OptimizeContext *context) const {
auto join_op = input->Op().As<LogicalInnerJoin>();
auto join_predicates =
std::vector<AnnotatedExpression>(join_op->join_predicates);
auto result_plan = std::make_shared<OperatorExpression>(
LogicalInnerJoin::make(join_predicates));
std::vector<std::shared_ptr<OperatorExpression>> children = input->Children();
PELOTON_ASSERT(children.size() == 2);
LOG_TRACE(
"Reorder left child with op %s and right child with op %s for inner join",
children[0]->Op().GetName().c_str(), children[1]->Op().GetName().c_str());
result_plan->PushChild(children[1]);
result_plan->PushChild(children[0]);
transformed.push_back(result_plan);
}
///////////////////////////////////////////////////////////////////////////////
/// InnerJoinAssociativity
InnerJoinAssociativity::InnerJoinAssociativity() {
type_ = RuleType::INNER_JOIN_ASSOCIATE;
// Create left nested join
auto left_child = std::make_shared<Pattern>(OpType::InnerJoin);
left_child->AddChild(std::make_shared<Pattern>(OpType::Leaf));
left_child->AddChild(std::make_shared<Pattern>(OpType::Leaf));
std::shared_ptr<Pattern> right_child(std::make_shared<Pattern>(OpType::Leaf));
match_pattern = std::make_shared<Pattern>(OpType::InnerJoin);
match_pattern->AddChild(left_child);
match_pattern->AddChild(right_child);
}
// TODO: As far as I know, theres nothing else that needs to be checked
bool InnerJoinAssociativity::Check(std::shared_ptr<OperatorExpression> expr,
OptimizeContext *context) const {
(void)context;
(void)expr;
return true;
}
void InnerJoinAssociativity::Transform(
std::shared_ptr<OperatorExpression> input,
std::vector<std::shared_ptr<OperatorExpression>> &transformed,
OptimizeContext *context) const {
// NOTE: Transforms (left JOIN middle) JOIN right -> left JOIN (middle JOIN
// right) Variables are named accordingly to above transformation
auto parent_join = input->Op().As<LogicalInnerJoin>();
std::vector<std::shared_ptr<OperatorExpression>> children = input->Children();
PELOTON_ASSERT(children.size() == 2);
PELOTON_ASSERT(children[0]->Op().GetType() == OpType::InnerJoin);
PELOTON_ASSERT(children[0]->Children().size() == 2);
auto child_join = children[0]->Op().As<LogicalInnerJoin>();
auto left = children[0]->Children()[0];
auto middle = children[0]->Children()[1];
auto right = children[1];
LOG_DEBUG("Reordered join structured: (%s JOIN %s) JOIN %s",
left->Op().GetName().c_str(), middle->Op().GetName().c_str(),
right->Op().GetName().c_str());
// Get Alias sets
auto &memo = context->metadata->memo;
auto middle_group_id = middle->Op().As<LeafOperator>()->origin_group;
auto right_group_id = right->Op().As<LeafOperator>()->origin_group;
const auto &middle_group_aliases_set =
memo.GetGroupByID(middle_group_id)->GetTableAliases();
const auto &right_group_aliases_set =
memo.GetGroupByID(right_group_id)->GetTableAliases();
// Union Predicates into single alias set for new child join
std::unordered_set<std::string> right_join_aliases_set;
right_join_aliases_set.insert(middle_group_aliases_set.begin(),
middle_group_aliases_set.end());
right_join_aliases_set.insert(right_group_aliases_set.begin(),
right_group_aliases_set.end());
// Redistribute predicates
auto parent_join_predicates =
std::vector<AnnotatedExpression>(parent_join->join_predicates);
auto child_join_predicates =
std::vector<AnnotatedExpression>(child_join->join_predicates);
std::vector<AnnotatedExpression> predicates;
predicates.insert(predicates.end(), parent_join_predicates.begin(),
parent_join_predicates.end());
predicates.insert(predicates.end(), child_join_predicates.begin(),
child_join_predicates.end());
std::vector<AnnotatedExpression> new_child_join_predicates;
std::vector<AnnotatedExpression> new_parent_join_predicates;
for (auto predicate : predicates) {
if (util::IsSubset(right_join_aliases_set, predicate.table_alias_set)) {
new_child_join_predicates.emplace_back(predicate);
} else {
new_parent_join_predicates.emplace_back(predicate);
}
}
// Construct new child join operator
std::shared_ptr<OperatorExpression> new_child_join =
std::make_shared<OperatorExpression>(
LogicalInnerJoin::make(new_child_join_predicates));
new_child_join->PushChild(middle);
new_child_join->PushChild(right);
// Construct new parent join operator
std::shared_ptr<OperatorExpression> new_parent_join =
std::make_shared<OperatorExpression>(
LogicalInnerJoin::make(new_parent_join_predicates));
new_parent_join->PushChild(left);
new_parent_join->PushChild(new_child_join);
transformed.push_back(new_parent_join);
}
//===--------------------------------------------------------------------===//
// Implementation rules
//===--------------------------------------------------------------------===//
///////////////////////////////////////////////////////////////////////////////
/// GetToDummyScan
GetToDummyScan::GetToDummyScan() {
type_ = RuleType::GET_TO_DUMMY_SCAN;
match_pattern = std::make_shared<Pattern>(OpType::Get);
}
bool GetToDummyScan::Check(std::shared_ptr<OperatorExpression> plan,
OptimizeContext *context) const {
(void)context;
const LogicalGet *get = plan->Op().As<LogicalGet>();
return get->table == nullptr;
}
void GetToDummyScan::Transform(
UNUSED_ATTRIBUTE std::shared_ptr<OperatorExpression> input,
std::vector<std::shared_ptr<OperatorExpression>> &transformed,
UNUSED_ATTRIBUTE OptimizeContext *context) const {
auto result_plan = std::make_shared<OperatorExpression>(DummyScan::make());
transformed.push_back(result_plan);
}
///////////////////////////////////////////////////////////////////////////////
/// GetToSeqScan
GetToSeqScan::GetToSeqScan() {
type_ = RuleType::GET_TO_SEQ_SCAN;
match_pattern = std::make_shared<Pattern>(OpType::Get);
}
bool GetToSeqScan::Check(std::shared_ptr<OperatorExpression> plan,
OptimizeContext *context) const {
(void)context;
const LogicalGet *get = plan->Op().As<LogicalGet>();
return get->table != nullptr;
}
void GetToSeqScan::Transform(
std::shared_ptr<OperatorExpression> input,
std::vector<std::shared_ptr<OperatorExpression>> &transformed,
UNUSED_ATTRIBUTE OptimizeContext *context) const {
const LogicalGet *get = input->Op().As<LogicalGet>();
auto result_plan = std::make_shared<OperatorExpression>(
PhysicalSeqScan::make(get->get_id, get->table, get->table_alias,
get->predicates, get->is_for_update));
UNUSED_ATTRIBUTE std::vector<std::shared_ptr<OperatorExpression>> children =
input->Children();
PELOTON_ASSERT(children.size() == 0);
transformed.push_back(result_plan);
}
///////////////////////////////////////////////////////////////////////////////
/// GetToIndexScan
GetToIndexScan::GetToIndexScan() {
type_ = RuleType::GET_TO_INDEX_SCAN;
match_pattern = std::make_shared<Pattern>(OpType::Get);
}
bool GetToIndexScan::Check(std::shared_ptr<OperatorExpression> plan,
OptimizeContext *context) const {
// If there is a index for the table, return true,
// else return false
(void)context;
const LogicalGet *get = plan->Op().As<LogicalGet>();
bool index_exist = false;
if (get != nullptr && get->table != nullptr &&
!get->table->GetIndexObjects().empty()) {
index_exist = true;
}
return index_exist;
}
void GetToIndexScan::Transform(
std::shared_ptr<OperatorExpression> input,
std::vector<std::shared_ptr<OperatorExpression>> &transformed,
UNUSED_ATTRIBUTE OptimizeContext *context) const {
UNUSED_ATTRIBUTE std::vector<std::shared_ptr<OperatorExpression>> children =
input->Children();
PELOTON_ASSERT(children.size() == 0);
const LogicalGet *get = input->Op().As<LogicalGet>();
// Get sort columns if they are all base columns and all in asc order
auto sort = context->required_prop->GetPropertyOfType(PropertyType::SORT);
std::vector<oid_t> sort_col_ids;
if (sort != nullptr) {
auto sort_prop = sort->As<PropertySort>();
bool sort_by_asc_base_column = true;
for (size_t i = 0; i < sort_prop->GetSortColumnSize(); i++) {
auto expr = sort_prop->GetSortColumn(i);
if (!sort_prop->GetSortAscending(i) ||
expr->GetExpressionType() != ExpressionType::VALUE_TUPLE) {
sort_by_asc_base_column = false;
break;
}
auto bound_oids =
reinterpret_cast<expression::TupleValueExpression *>(expr)
->GetBoundOid();
sort_col_ids.push_back(std::get<2>(bound_oids));
}
// Check whether any index can fulfill sort property
if (sort_by_asc_base_column) {
for (auto &index_id_object_pair : get->table->GetIndexObjects()) {
auto &index_id = index_id_object_pair.first;
auto &index = index_id_object_pair.second;
auto &index_col_ids = index->GetKeyAttrs();
// We want to ensure that Sort(a, b, c, d, e) can fit Sort(a, b, c)
size_t l_num_sort_columns = index_col_ids.size();
size_t r_num_sort_columns = sort_col_ids.size();
if (l_num_sort_columns < r_num_sort_columns) {
continue;
}
bool index_matched = true;
for (size_t idx = 0; idx < r_num_sort_columns; ++idx) {
if (index_col_ids[idx] != sort_col_ids[idx]) {
index_matched = false;
break;
}
}
// Add transformed plan if found
if (index_matched) {
auto index_scan_op = PhysicalIndexScan::make(
get->get_id, get->table, get->table_alias, get->predicates,
get->is_for_update, index_id, {}, {}, {});
transformed.push_back(
std::make_shared<OperatorExpression>(index_scan_op));
}
}
}
}
// Check whether any index can fulfill predicate predicate evaluation
if (!get->predicates.empty()) {
std::vector<oid_t> key_column_id_list;
std::vector<ExpressionType> expr_type_list;
std::vector<type::Value> value_list;
for (auto &pred : get->predicates) {
auto expr = pred.expr.get();
if (expr->GetChildrenSize() != 2) continue;
auto expr_type = expr->GetExpressionType();
expression::AbstractExpression *tv_expr = nullptr;
expression::AbstractExpression *value_expr = nullptr;
// Fetch column reference and value
if (expr->GetChild(0)->GetExpressionType() ==
ExpressionType::VALUE_TUPLE) {
auto r_type = expr->GetChild(1)->GetExpressionType();
if (r_type == ExpressionType::VALUE_CONSTANT ||
r_type == ExpressionType::VALUE_PARAMETER) {
tv_expr = expr->GetModifiableChild(0);
value_expr = expr->GetModifiableChild(1);
}
} else if (expr->GetChild(1)->GetExpressionType() ==
ExpressionType::VALUE_TUPLE) {
auto l_type = expr->GetChild(0)->GetExpressionType();
if (l_type == ExpressionType::VALUE_CONSTANT ||
l_type == ExpressionType::VALUE_PARAMETER) {
tv_expr = expr->GetModifiableChild(1);
value_expr = expr->GetModifiableChild(0);
expr_type =
expression::ExpressionUtil::ReverseComparisonExpressionType(
expr_type);
}
}
// If found valid tv_expr and value_expr, update col_id_list,
// expr_type_list and val_list
if (tv_expr != nullptr) {
auto column_ref = (expression::TupleValueExpression *)tv_expr;
std::string col_name(column_ref->GetColumnName());
LOG_TRACE("Column name: %s", col_name.c_str());
auto column_id = get->table->GetColumnObject(col_name)->GetColumnId();
key_column_id_list.push_back(column_id);
expr_type_list.push_back(expr_type);
if (value_expr->GetExpressionType() == ExpressionType::VALUE_CONSTANT) {
value_list.push_back(
reinterpret_cast<expression::ConstantValueExpression *>(
value_expr)
->GetValue());
LOG_TRACE("Value Type: %d",
static_cast<int>(
reinterpret_cast<expression::ConstantValueExpression *>(
expr->GetModifiableChild(1))
->GetValueType()));
} else {
value_list.push_back(
type::ValueFactory::GetParameterOffsetValue(
reinterpret_cast<expression::ParameterValueExpression *>(
value_expr)
->GetValueIdx())
.Copy());
LOG_TRACE("Parameter offset: %s",
(*value_list.rbegin()).GetInfo().c_str());
}
}
} // Loop predicates end
// Find match index for the predicates
auto index_objects = get->table->GetIndexObjects();
for (auto &index_id_object_pair : index_objects) {
auto &index_id = index_id_object_pair.first;
auto &index_object = index_id_object_pair.second;
std::vector<oid_t> index_key_column_id_list;
std::vector<ExpressionType> index_expr_type_list;
std::vector<type::Value> index_value_list;
// Only pick the index if the query columns match the index's columns in
// the same order.
auto index_id_list = index_object->GetKeyAttrs();
for (size_t offset = 0; (offset < key_column_id_list.size()) &&
(offset < index_id_list.size());
offset++) {
if (index_id_list[offset] == key_column_id_list[offset]) {
index_key_column_id_list.push_back(key_column_id_list[offset]);
index_expr_type_list.push_back(expr_type_list[offset]);
index_value_list.push_back(value_list[offset]);
} else {
break;
}
}
// Add transformed plan
if (!index_key_column_id_list.empty()) {
auto index_scan_op = PhysicalIndexScan::make(
get->get_id, get->table, get->table_alias, get->predicates,
get->is_for_update, index_id, index_key_column_id_list,
index_expr_type_list, index_value_list);
transformed.push_back(
std::make_shared<OperatorExpression>(index_scan_op));
}
}
}
}
///////////////////////////////////////////////////////////////////////////////
/// LogicalQueryDerivedGetToPhysical
LogicalQueryDerivedGetToPhysical::LogicalQueryDerivedGetToPhysical() {
type_ = RuleType::QUERY_DERIVED_GET_TO_PHYSICAL;
match_pattern = std::make_shared<Pattern>(OpType::LogicalQueryDerivedGet);
std::shared_ptr<Pattern> child(std::make_shared<Pattern>(OpType::Leaf));
match_pattern->AddChild(child);
}
bool LogicalQueryDerivedGetToPhysical::Check(
std::shared_ptr<OperatorExpression> expr, OptimizeContext *context) const {
(void)context;
(void)expr;
return true;
}
void LogicalQueryDerivedGetToPhysical::Transform(
std::shared_ptr<OperatorExpression> input,
std::vector<std::shared_ptr<OperatorExpression>> &transformed,
UNUSED_ATTRIBUTE OptimizeContext *context) const {
const LogicalQueryDerivedGet *get = input->Op().As<LogicalQueryDerivedGet>();
auto result_plan =
std::make_shared<OperatorExpression>(QueryDerivedScan::make(
get->get_id, get->table_alias, get->alias_to_expr_map));
result_plan->PushChild(input->Children().at(0));
transformed.push_back(result_plan);
}
///////////////////////////////////////////////////////////////////////////////
/// LogicalDeleteToPhysical
LogicalDeleteToPhysical::LogicalDeleteToPhysical() {
type_ = RuleType::DELETE_TO_PHYSICAL;
match_pattern = std::make_shared<Pattern>(OpType::LogicalDelete);
std::shared_ptr<Pattern> child(std::make_shared<Pattern>(OpType::Leaf));
match_pattern->AddChild(child);
}
bool LogicalDeleteToPhysical::Check(std::shared_ptr<OperatorExpression> plan,
OptimizeContext *context) const {
(void)plan;
(void)context;
return true;
}
void LogicalDeleteToPhysical::Transform(
std::shared_ptr<OperatorExpression> input,
std::vector<std::shared_ptr<OperatorExpression>> &transformed,
UNUSED_ATTRIBUTE OptimizeContext *context) const {
const LogicalDelete *delete_op = input->Op().As<LogicalDelete>();
auto result = std::make_shared<OperatorExpression>(
PhysicalDelete::make(delete_op->target_table));
PELOTON_ASSERT(input->Children().size() == 1);
result->PushChild(input->Children().at(0));
transformed.push_back(result);
}
///////////////////////////////////////////////////////////////////////////////
/// LogicalUpdateToPhysical
LogicalUpdateToPhysical::LogicalUpdateToPhysical() {
type_ = RuleType::UPDATE_TO_PHYSICAL;
match_pattern = std::make_shared<Pattern>(OpType::LogicalUpdate);
std::shared_ptr<Pattern> child(std::make_shared<Pattern>(OpType::Leaf));
match_pattern->AddChild(child);
}
bool LogicalUpdateToPhysical::Check(std::shared_ptr<OperatorExpression> plan,
OptimizeContext *context) const {
(void)plan;
(void)context;
return true;
}
void LogicalUpdateToPhysical::Transform(
std::shared_ptr<OperatorExpression> input,
std::vector<std::shared_ptr<OperatorExpression>> &transformed,
UNUSED_ATTRIBUTE OptimizeContext *context) const {
const LogicalUpdate *update_op = input->Op().As<LogicalUpdate>();
auto result = std::make_shared<OperatorExpression>(
PhysicalUpdate::make(update_op->target_table, update_op->updates));
PELOTON_ASSERT(input->Children().size() != 0);
result->PushChild(input->Children().at(0));
transformed.push_back(result);
}
///////////////////////////////////////////////////////////////////////////////
/// LogicalInsertToPhysical
LogicalInsertToPhysical::LogicalInsertToPhysical() {
type_ = RuleType::INSERT_TO_PHYSICAL;
match_pattern = std::make_shared<Pattern>(OpType::LogicalInsert);
// std::shared_ptr<Pattern> child(std::make_shared<Pattern>(OpType::Leaf));
// match_pattern->AddChild(child);
}
bool LogicalInsertToPhysical::Check(std::shared_ptr<OperatorExpression> plan,
OptimizeContext *context) const {
(void)plan;
(void)context;
return true;
}
void LogicalInsertToPhysical::Transform(
std::shared_ptr<OperatorExpression> input,
std::vector<std::shared_ptr<OperatorExpression>> &transformed,
UNUSED_ATTRIBUTE OptimizeContext *context) const {
const LogicalInsert *insert_op = input->Op().As<LogicalInsert>();
auto result = std::make_shared<OperatorExpression>(PhysicalInsert::make(
insert_op->target_table, insert_op->columns, insert_op->values));
PELOTON_ASSERT(input->Children().size() == 0);
// result->PushChild(input->Children().at(0));
transformed.push_back(result);
}
///////////////////////////////////////////////////////////////////////////////
/// LogicalInsertSelectToPhysical
LogicalInsertSelectToPhysical::LogicalInsertSelectToPhysical() {
type_ = RuleType::INSERT_SELECT_TO_PHYSICAL;
match_pattern = std::make_shared<Pattern>(OpType::LogicalInsertSelect);
std::shared_ptr<Pattern> child(std::make_shared<Pattern>(OpType::Leaf));
match_pattern->AddChild(child);
}
bool LogicalInsertSelectToPhysical::Check(
std::shared_ptr<OperatorExpression> plan, OptimizeContext *context) const {
(void)plan;
(void)context;
return true;
}
void LogicalInsertSelectToPhysical::Transform(
std::shared_ptr<OperatorExpression> input,
std::vector<std::shared_ptr<OperatorExpression>> &transformed,
UNUSED_ATTRIBUTE OptimizeContext *context) const {
const LogicalInsertSelect *insert_op = input->Op().As<LogicalInsertSelect>();
auto result = std::make_shared<OperatorExpression>(
PhysicalInsertSelect::make(insert_op->target_table));
PELOTON_ASSERT(input->Children().size() == 1);
result->PushChild(input->Children().at(0));
transformed.push_back(result);
}
///////////////////////////////////////////////////////////////////////////////
/// LogicalAggregateAndGroupByToHashGroupBy
LogicalGroupByToHashGroupBy::LogicalGroupByToHashGroupBy() {
type_ = RuleType::AGGREGATE_TO_HASH_AGGREGATE;
match_pattern = std::make_shared<Pattern>(OpType::LogicalAggregateAndGroupBy);
std::shared_ptr<Pattern> child(std::make_shared<Pattern>(OpType::Leaf));
match_pattern->AddChild(child);
}
bool LogicalGroupByToHashGroupBy::Check(
UNUSED_ATTRIBUTE std::shared_ptr<OperatorExpression> plan,
OptimizeContext *context) const {
(void)context;
const LogicalAggregateAndGroupBy *agg_op =
plan->Op().As<LogicalAggregateAndGroupBy>();
return !agg_op->columns.empty();
}
void LogicalGroupByToHashGroupBy::Transform(
std::shared_ptr<OperatorExpression> input,
std::vector<std::shared_ptr<OperatorExpression>> &transformed,
UNUSED_ATTRIBUTE OptimizeContext *context) const {
const LogicalAggregateAndGroupBy *agg_op =
input->Op().As<LogicalAggregateAndGroupBy>();
auto result = std::make_shared<OperatorExpression>(
PhysicalHashGroupBy::make(agg_op->columns, agg_op->having));
PELOTON_ASSERT(input->Children().size() == 1);
result->PushChild(input->Children().at(0));
transformed.push_back(result);
}
///////////////////////////////////////////////////////////////////////////////
/// LogicalAggregateToPhysical
LogicalAggregateToPhysical::LogicalAggregateToPhysical() {
type_ = RuleType::AGGREGATE_TO_PLAIN_AGGREGATE;
match_pattern = std::make_shared<Pattern>(OpType::LogicalAggregateAndGroupBy);
std::shared_ptr<Pattern> child(std::make_shared<Pattern>(OpType::Leaf));
match_pattern->AddChild(child);
}
bool LogicalAggregateToPhysical::Check(
UNUSED_ATTRIBUTE std::shared_ptr<OperatorExpression> plan,
OptimizeContext *context) const {
(void)context;
const LogicalAggregateAndGroupBy *agg_op =
plan->Op().As<LogicalAggregateAndGroupBy>();
return agg_op->columns.empty();
}
void LogicalAggregateToPhysical::Transform(
std::shared_ptr<OperatorExpression> input,
std::vector<std::shared_ptr<OperatorExpression>> &transformed,
UNUSED_ATTRIBUTE OptimizeContext *context) const {
auto result = std::make_shared<OperatorExpression>(PhysicalAggregate::make());
PELOTON_ASSERT(input->Children().size() == 1);
result->PushChild(input->Children().at(0));
transformed.push_back(result);
}
///////////////////////////////////////////////////////////////////////////////
/// InnerJoinToInnerNLJoin
InnerJoinToInnerNLJoin::InnerJoinToInnerNLJoin() {
type_ = RuleType::INNER_JOIN_TO_NL_JOIN;
// TODO NLJoin currently only support left deep tree
std::shared_ptr<Pattern> left_child(std::make_shared<Pattern>(OpType::Leaf));
std::shared_ptr<Pattern> right_child(std::make_shared<Pattern>(OpType::Leaf));
// Initialize a pattern for optimizer to match
match_pattern = std::make_shared<Pattern>(OpType::InnerJoin);
// Add node - we match join relation R and S
match_pattern->AddChild(left_child);
match_pattern->AddChild(right_child);
return;
}
bool InnerJoinToInnerNLJoin::Check(std::shared_ptr<OperatorExpression> plan,
OptimizeContext *context) const {
(void)context;
(void)plan;
return true;
}
void InnerJoinToInnerNLJoin::Transform(
std::shared_ptr<OperatorExpression> input,
std::vector<std::shared_ptr<OperatorExpression>> &transformed,
UNUSED_ATTRIBUTE OptimizeContext *context) const {
// first build an expression representing hash join
const LogicalInnerJoin *inner_join = input->Op().As<LogicalInnerJoin>();
auto children = input->Children();
PELOTON_ASSERT(children.size() == 2);
auto left_group_id = children[0]->Op().As<LeafOperator>()->origin_group;
auto right_group_id = children[1]->Op().As<LeafOperator>()->origin_group;
auto &left_group_alias =
context->metadata->memo.GetGroupByID(left_group_id)->GetTableAliases();
auto &right_group_alias =
context->metadata->memo.GetGroupByID(right_group_id)->GetTableAliases();
std::vector<std::unique_ptr<expression::AbstractExpression>> left_keys;
std::vector<std::unique_ptr<expression::AbstractExpression>> right_keys;
util::ExtractEquiJoinKeys(inner_join->join_predicates, left_keys, right_keys,
left_group_alias, right_group_alias);
PELOTON_ASSERT(right_keys.size() == left_keys.size());
auto result_plan =
std::make_shared<OperatorExpression>(PhysicalInnerNLJoin::make(
inner_join->join_predicates, left_keys, right_keys));
// Then push all children into the child list of the new operator
result_plan->PushChild(children[0]);
result_plan->PushChild(children[1]);
transformed.push_back(result_plan);
return;
}
///////////////////////////////////////////////////////////////////////////////
/// InnerJoinToInnerHashJoin
InnerJoinToInnerHashJoin::InnerJoinToInnerHashJoin() {
type_ = RuleType::INNER_JOIN_TO_HASH_JOIN;
// Make three node types for pattern matching
std::shared_ptr<Pattern> left_child(std::make_shared<Pattern>(OpType::Leaf));
std::shared_ptr<Pattern> right_child(std::make_shared<Pattern>(OpType::Leaf));
// Initialize a pattern for optimizer to match
match_pattern = std::make_shared<Pattern>(OpType::InnerJoin);
// Add node - we match join relation R and S as well as the predicate exp
match_pattern->AddChild(left_child);
match_pattern->AddChild(right_child);
return;
}
bool InnerJoinToInnerHashJoin::Check(std::shared_ptr<OperatorExpression> plan,
OptimizeContext *context) const {
(void)context;
(void)plan;
return true;
}
void InnerJoinToInnerHashJoin::Transform(
std::shared_ptr<OperatorExpression> input,
std::vector<std::shared_ptr<OperatorExpression>> &transformed,
UNUSED_ATTRIBUTE OptimizeContext *context) const {
// first build an expression representing hash join
const LogicalInnerJoin *inner_join = input->Op().As<LogicalInnerJoin>();
auto children = input->Children();
PELOTON_ASSERT(children.size() == 2);
auto left_group_id = children[0]->Op().As<LeafOperator>()->origin_group;
auto right_group_id = children[1]->Op().As<LeafOperator>()->origin_group;
auto &left_group_alias =
context->metadata->memo.GetGroupByID(left_group_id)->GetTableAliases();
auto &right_group_alias =
context->metadata->memo.GetGroupByID(right_group_id)->GetTableAliases();
std::vector<std::unique_ptr<expression::AbstractExpression>> left_keys;
std::vector<std::unique_ptr<expression::AbstractExpression>> right_keys;
util::ExtractEquiJoinKeys(inner_join->join_predicates, left_keys, right_keys,
left_group_alias, right_group_alias);
PELOTON_ASSERT(right_keys.size() == left_keys.size());
if (!left_keys.empty()) {
auto result_plan =
std::make_shared<OperatorExpression>(PhysicalInnerHashJoin::make(
inner_join->join_predicates, left_keys, right_keys));
// Then push all children into the child list of the new operator
result_plan->PushChild(children[0]);
result_plan->PushChild(children[1]);
transformed.push_back(result_plan);
}
}
///////////////////////////////////////////////////////////////////////////////
/// ImplementDistinct
ImplementDistinct::ImplementDistinct() {
type_ = RuleType::IMPLEMENT_DISTINCT;
match_pattern = std::make_shared<Pattern>(OpType::LogicalDistinct);
match_pattern->AddChild(std::make_shared<Pattern>(OpType::Leaf));
}
bool ImplementDistinct::Check(std::shared_ptr<OperatorExpression> plan,
OptimizeContext *context) const {
(void)context;
(void)plan;
return true;
}
void ImplementDistinct::Transform(
std::shared_ptr<OperatorExpression> input,
std::vector<std::shared_ptr<OperatorExpression>> &transformed,
OptimizeContext *context) const {
(void)context;
auto result_plan =
std::make_shared<OperatorExpression>(PhysicalDistinct::make());
std::vector<std::shared_ptr<OperatorExpression>> children = input->Children();
PELOTON_ASSERT(children.size() == 1);
result_plan->PushChild(children[0]);
transformed.push_back(result_plan);
}
///////////////////////////////////////////////////////////////////////////////
/// ImplementLimit
ImplementLimit::ImplementLimit() {
type_ = RuleType::IMPLEMENT_LIMIT;
match_pattern = std::make_shared<Pattern>(OpType::LogicalLimit);
match_pattern->AddChild(std::make_shared<Pattern>(OpType::Leaf));
}
bool ImplementLimit::Check(std::shared_ptr<OperatorExpression> plan,
OptimizeContext *context) const {
(void)context;
(void)plan;
return true;
}
void ImplementLimit::Transform(
std::shared_ptr<OperatorExpression> input,
std::vector<std::shared_ptr<OperatorExpression>> &transformed,
OptimizeContext *context) const {
(void)context;
const LogicalLimit *limit_op = input->Op().As<LogicalLimit>();
auto result_plan = std::make_shared<OperatorExpression>(
PhysicalLimit::make(limit_op->offset, limit_op->limit));
std::vector<std::shared_ptr<OperatorExpression>> children = input->Children();
PELOTON_ASSERT(children.size() == 1);
result_plan->PushChild(children[0]);
transformed.push_back(result_plan);
}
//===--------------------------------------------------------------------===//
// Rewrite rules
//===--------------------------------------------------------------------===//
///////////////////////////////////////////////////////////////////////////////
/// PushFilterThroughJoin
PushFilterThroughJoin::PushFilterThroughJoin() {
type_ = RuleType::PUSH_FILTER_THROUGH_JOIN;
// Make three node types for pattern matching
std::shared_ptr<Pattern> child(std::make_shared<Pattern>(OpType::InnerJoin));
child->AddChild(std::make_shared<Pattern>(OpType::Leaf));
child->AddChild(std::make_shared<Pattern>(OpType::Leaf));
// Initialize a pattern for optimizer to match
match_pattern = std::make_shared<Pattern>(OpType::LogicalFilter);
// Add node - we match join relation R and S as well as the predicate exp
match_pattern->AddChild(child);
}
bool PushFilterThroughJoin::Check(std::shared_ptr<OperatorExpression>,
OptimizeContext *) const {
return true;
}
void PushFilterThroughJoin::Transform(
std::shared_ptr<OperatorExpression> input,
std::vector<std::shared_ptr<OperatorExpression>> &transformed,
UNUSED_ATTRIBUTE OptimizeContext *context) const {
LOG_TRACE("PushFilterThroughJoin::Transform");
auto &memo = context->metadata->memo;
auto join_op_expr = input->Children().at(0);
auto &join_children = join_op_expr->Children();
auto left_group_id = join_children[0]->Op().As<LeafOperator>()->origin_group;
auto right_group_id = join_children[1]->Op().As<LeafOperator>()->origin_group;
const auto &left_group_aliases_set =
memo.GetGroupByID(left_group_id)->GetTableAliases();
const auto &right_group_aliases_set =
memo.GetGroupByID(right_group_id)->GetTableAliases();
auto &predicates = input->Op().As<LogicalFilter>()->predicates;
std::vector<AnnotatedExpression> left_predicates;
std::vector<AnnotatedExpression> right_predicates;
std::vector<AnnotatedExpression> join_predicates;
// Loop over all predicates, check each of them if they can be pushed down to
// either the left child or the right child to be evaluated
// All predicates in this loop follow conjunction relationship because we
// already extract these predicates from the original.
// E.g. An expression (test.a = test1.b and test.a = 5) would become
// {test.a = test1.b, test.a = 5}
for (auto &predicate : predicates) {
if (util::IsSubset(left_group_aliases_set, predicate.table_alias_set)) {
left_predicates.emplace_back(predicate);
} else if (util::IsSubset(right_group_aliases_set,
predicate.table_alias_set)) {
right_predicates.emplace_back(predicate);
} else {
join_predicates.emplace_back(predicate);
}
}
// Construct join operator
auto pre_join_predicate =
join_op_expr->Op().As<LogicalInnerJoin>()->join_predicates;
join_predicates.insert(join_predicates.end(), pre_join_predicate.begin(),
pre_join_predicate.end());
std::shared_ptr<OperatorExpression> output =
std::make_shared<OperatorExpression>(
LogicalInnerJoin::make(join_predicates));
// Construct left filter if any
if (!left_predicates.empty()) {
auto left_filter = std::make_shared<OperatorExpression>(
LogicalFilter::make(left_predicates));
left_filter->PushChild(join_op_expr->Children()[0]);
output->PushChild(left_filter);
} else {
output->PushChild(join_op_expr->Children()[0]);
}
// Construct left filter if any
if (!right_predicates.empty()) {
auto right_filter = std::make_shared<OperatorExpression>(
LogicalFilter::make(right_predicates));
right_filter->PushChild(join_op_expr->Children()[1]);
output->PushChild(right_filter);
} else {
output->PushChild(join_op_expr->Children()[1]);
}
PELOTON_ASSERT(output->Children().size() == 2);
transformed.push_back(output);
}
///////////////////////////////////////////////////////////////////////////////
/// PushFilterThroughAggregation
PushFilterThroughAggregation::PushFilterThroughAggregation() {
type_ = RuleType::PUSH_FILTER_THROUGH_JOIN;
std::shared_ptr<Pattern> child(
std::make_shared<Pattern>(OpType::LogicalAggregateAndGroupBy));
child->AddChild(std::make_shared<Pattern>(OpType::Leaf));
// Initialize a pattern for optimizer to match
match_pattern = std::make_shared<Pattern>(OpType::LogicalFilter);
// Add node - we match (filter)->(aggregation)->(leaf)
match_pattern->AddChild(child);
}
bool PushFilterThroughAggregation::Check(std::shared_ptr<OperatorExpression>,
OptimizeContext *) const {
return true;
}
void PushFilterThroughAggregation::Transform(
std::shared_ptr<OperatorExpression> input,
std::vector<std::shared_ptr<OperatorExpression>> &transformed,
UNUSED_ATTRIBUTE OptimizeContext *context) const {
LOG_TRACE("PushFilterThroughAggregation::Transform");
auto aggregation_op =
input->Children().at(0)->Op().As<LogicalAggregateAndGroupBy>();
auto &predicates = input->Op().As<LogicalFilter>()->predicates;
std::vector<AnnotatedExpression> embedded_predicates;
std::vector<AnnotatedExpression> pushdown_predicates;
for (auto &predicate : predicates) {
std::vector<expression::AggregateExpression *> aggr_exprs;
expression::ExpressionUtil::GetAggregateExprs(aggr_exprs,
predicate.expr.get());
// No aggr_expr in the predicate -- pushdown to evaluate
if (aggr_exprs.empty()) {
pushdown_predicates.emplace_back(predicate);
} else {
embedded_predicates.emplace_back(predicate);
}
}
// Add original having predicates
for (auto &predicate : aggregation_op->having) {
embedded_predicates.emplace_back(predicate);
}
auto groupby_cols = aggregation_op->columns;
std::shared_ptr<OperatorExpression> output =
std::make_shared<OperatorExpression>(
LogicalAggregateAndGroupBy::make(groupby_cols, embedded_predicates));
auto bottom_operator = output;
// Construct left filter if any
if (!pushdown_predicates.empty()) {
auto filter = std::make_shared<OperatorExpression>(
LogicalFilter::make(pushdown_predicates));
output->PushChild(filter);
bottom_operator = filter;
}
// Add leaf
bottom_operator->PushChild(input->Children()[0]->Children()[0]);
transformed.push_back(output);
}
///////////////////////////////////////////////////////////////////////////////
/// CombineConsecutiveFilter
CombineConsecutiveFilter::CombineConsecutiveFilter() {
type_ = RuleType::COMBINE_CONSECUTIVE_FILTER;
match_pattern = std::make_shared<Pattern>(OpType::LogicalFilter);
std::shared_ptr<Pattern> child(
std::make_shared<Pattern>(OpType::LogicalFilter));
child->AddChild(std::make_shared<Pattern>(OpType::Leaf));
match_pattern->AddChild(child);
}
bool CombineConsecutiveFilter::Check(std::shared_ptr<OperatorExpression> plan,
OptimizeContext *context) const {
(void)context;
(void)plan;
auto &children = plan->Children();
(void)children;
PELOTON_ASSERT(children.size() == 1);
auto &filter = children.at(0);
(void)filter;
PELOTON_ASSERT(filter->Children().size() == 1);
return true;
}
void CombineConsecutiveFilter::Transform(
std::shared_ptr<OperatorExpression> input,
std::vector<std::shared_ptr<OperatorExpression>> &transformed,
UNUSED_ATTRIBUTE OptimizeContext *context) const {