|
| 1 | +# diagnostics |
| 2 | +import numpy as np |
| 3 | +from datetime import datetime, timedelta |
| 4 | +# testing models |
| 5 | +from sklearn.model_selection import train_test_split |
| 6 | +from sklearn.preprocessing import StandardScaler |
| 7 | +import tests.test_data as test_data |
| 8 | +# hyperopt |
| 9 | +from hyperopt.pyll.base import scope |
| 10 | +from hyperopt import hp |
| 11 | +# models |
| 12 | +from models.SSML.CoTraining import CoTraining |
| 13 | +# testing write |
| 14 | +import joblib |
| 15 | +import os |
| 16 | + |
| 17 | +# initialize sample data |
| 18 | +start_date = datetime(2019, 2, 2) |
| 19 | +delta = timedelta(seconds=1) |
| 20 | +timestamps = np.arange(start_date, |
| 21 | + start_date + (test_data.timesteps * delta), |
| 22 | + delta).astype('datetime64[s]').astype('float64') |
| 23 | + |
| 24 | +live = np.full((len(timestamps),), test_data.livetime) |
| 25 | +sample_val = 1.0 |
| 26 | +spectra = np.full((len(timestamps), test_data.energy_bins), |
| 27 | + np.full((1, test_data.energy_bins), sample_val)) |
| 28 | +# setting up for rejected null hypothesis |
| 29 | +rejected_H0_time = np.random.choice(spectra.shape[0], |
| 30 | + test_data.timesteps//2, |
| 31 | + replace=False) |
| 32 | +spectra[rejected_H0_time] = 100.0 |
| 33 | + |
| 34 | +labels = np.full((spectra.shape[0],), 0) |
| 35 | +labels[rejected_H0_time] = 1 |
| 36 | + |
| 37 | + |
| 38 | +def test_CoTraining(): |
| 39 | + # test saving model input parameters |
| 40 | + params = {'max_iter': 2022, 'tol': 0.5, 'C': 5.0} |
| 41 | + model = CoTraining(params=params) |
| 42 | + |
| 43 | + assert model.model1.max_iter == params['max_iter'] |
| 44 | + assert model.model1.tol == params['tol'] |
| 45 | + assert model.model1.C == params['C'] |
| 46 | + |
| 47 | + assert model.model2.max_iter == params['max_iter'] |
| 48 | + assert model.model2.tol == params['tol'] |
| 49 | + assert model.model2.C == params['C'] |
| 50 | + |
| 51 | + X, Ux, y, Uy = train_test_split(spectra, |
| 52 | + labels, |
| 53 | + test_size=0.5, |
| 54 | + random_state=0) |
| 55 | + X_train, X_test, y_train, y_test = train_test_split(X, |
| 56 | + y, |
| 57 | + test_size=0.2, |
| 58 | + random_state=0) |
| 59 | + |
| 60 | + # normalization |
| 61 | + normalizer = StandardScaler() |
| 62 | + normalizer.fit(X_train) |
| 63 | + |
| 64 | + X_train = normalizer.transform(X_train) |
| 65 | + X_test = normalizer.transform(X_test) |
| 66 | + Ux = normalizer.transform(Ux) |
| 67 | + |
| 68 | + # default behavior |
| 69 | + model = CoTraining(params=None, random_state=0) |
| 70 | + model.train(X_train, y_train, Ux) |
| 71 | + |
| 72 | + # testing train and predict methods |
| 73 | + pred, acc, *_ = model.predict(X_test, y_test) |
| 74 | + |
| 75 | + assert acc > 0.7 |
| 76 | + np.testing.assert_equal(pred, y_test) |
| 77 | + |
| 78 | + # testing hyperopt optimize methods |
| 79 | + space = {'max_iter': scope.int(hp.quniform('max_iter', |
| 80 | + 10, |
| 81 | + 10000, |
| 82 | + 10)), |
| 83 | + 'tol': hp.loguniform('tol', 1e-5, 1e-3), |
| 84 | + 'C': hp.uniform('C', 1.0, 1000.0), |
| 85 | + 'n_samples': scope.int(hp.quniform('n_samples', |
| 86 | + 1, |
| 87 | + 20, |
| 88 | + 1)), |
| 89 | + 'seed': 0 |
| 90 | + } |
| 91 | + data_dict = {'trainx': X_train, |
| 92 | + 'testx': X_test, |
| 93 | + 'trainy': y_train, |
| 94 | + 'testy': y_test, |
| 95 | + 'Ux': Ux |
| 96 | + } |
| 97 | + model.optimize(space, data_dict, max_evals=2, verbose=True) |
| 98 | + |
| 99 | + assert model.best['accuracy'] >= model.worst['accuracy'] |
| 100 | + assert model.best['status'] == 'ok' |
| 101 | + |
| 102 | + # testing model plotting method |
| 103 | + filename = 'test_plot' |
| 104 | + model.plot_cotraining(model1_accs=model.best['model1_acc_history'], |
| 105 | + model2_accs=model.best['model2_acc_history'], |
| 106 | + filename=filename) |
| 107 | + os.remove(filename+'.png') |
| 108 | + |
| 109 | + # testing model write to file method |
| 110 | + filename = 'test_LogReg' |
| 111 | + ext = '.joblib' |
| 112 | + model.save(filename) |
| 113 | + model_file = joblib.load(filename+ext) |
| 114 | + assert model_file.best['params'] == model.best['params'] |
| 115 | + |
| 116 | + os.remove(filename+ext) |
0 commit comments