Skip to content

1、Regarding the issue of conservatism 2、lie group mapping #139

@zhengnx0906

Description

@zhengnx0906

When I test the following code:
x = Interval(-4,4)
f = Function("x", "cos(x)*cos(x)+sin(x)*sin(x)")
y = f.eval(x)
print(y)
I have obtained the following results:
([-2, 2])
So, for the sake of convenience in calculation, did we not consider the relationship between internal variables?


I continued to test ContractorNetwork:
a = Interval(-4,4)
y = Interval(-6,6)
x = Interval(-6,6)
z = Interval(0,36)
cn = ContractorNetwork() # Creating a Contractor Network
ctc_add = CtcFunction(Function("x", "a", "cos(a)-x")) #x=cos(a)
ctc_add2 = CtcFunction(Function("y", "a", "sin(a)-y")) #y=sin(a)
ctc_add3 = CtcFunction(Function("x", "y", "z", "x * x+y * y-z")) #z=x^2+y^2
cn.add(ctc_add, [x, a]) # Adding the C+ contractor to the network,
cn.add(ctc_add2, [y, a]) # Adding the C+ contractor to the network
cn.add(ctc_add3, [x, y, z]) # Adding the C+ contractor to the network
cn.contract()
print(x)
print(z)
Obtained similar results:
[-1, 1]
[-2, 2]


Now I am reproducing the following literature. There are still many questions about the mapping of three-dimensional Lie groups and Lie algebras. Can you provide me with some help?
Set inversion and box contraction on Lie groups using interval analysis Nicolas Merlinge
https://doi.org/10.1016/j.automatica.2024.111688

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions