diff --git a/__init__.pyc b/__init__.pyc index 9f1c574..dfb667a 100644 Binary files a/__init__.pyc and b/__init__.pyc differ diff --git a/q01_grid_search/__init__.pyc b/q01_grid_search/__init__.pyc index 545de0a..487549e 100644 Binary files a/q01_grid_search/__init__.pyc and b/q01_grid_search/__init__.pyc differ diff --git a/q01_grid_search/build.py b/q01_grid_search/build.py index 1438657..627d713 100644 --- a/q01_grid_search/build.py +++ b/q01_grid_search/build.py @@ -1,3 +1,4 @@ +# %load q01_grid_search/build.py # Default imports import warnings @@ -6,6 +7,8 @@ from sklearn.model_selection import train_test_split from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import GridSearchCV +from sklearn.metrics import r2_score +import numpy as np loan_data = pd.read_csv('data/loan_prediction.csv') X_bal = loan_data.iloc[:, :-1] @@ -16,9 +19,14 @@ "n_estimators": [10, 50, 120], "max_depth": [40, 20, 10], "max_leaf_nodes": [5, 10, 2]} +classifier = RandomForestClassifier(random_state=9,oob_score=True) - -# Write your solution here : +def grid_search(X_train, y_train, classifier,param_grid,cv=3): + grid_search = GridSearchCV(estimator=classifier, param_grid=param_grid,cv=3) + grid_search.fit(X_train,y_train) + y_prediction = grid_search.predict(X_test) + return grid_search, tuple(grid_search.cv_results_['params']), grid_search.cv_results_['mean_test_score'] +#grid_search(X_train, y_train, classifier, param_grid) diff --git a/q01_grid_search/build.pyc b/q01_grid_search/build.pyc index 4470232..ed91701 100644 Binary files a/q01_grid_search/build.pyc and b/q01_grid_search/build.pyc differ diff --git a/q01_grid_search/tests/__init__.pyc b/q01_grid_search/tests/__init__.pyc index 426e901..af537e8 100644 Binary files a/q01_grid_search/tests/__init__.pyc and b/q01_grid_search/tests/__init__.pyc differ diff --git a/q01_grid_search/tests/test_q01_grid_search.pyc b/q01_grid_search/tests/test_q01_grid_search.pyc index 782fd4f..632114f 100644 Binary files a/q01_grid_search/tests/test_q01_grid_search.pyc and b/q01_grid_search/tests/test_q01_grid_search.pyc differ diff --git a/q02_fit/__init__.pyc b/q02_fit/__init__.pyc index 135dfa0..ad35ed1 100644 Binary files a/q02_fit/__init__.pyc and b/q02_fit/__init__.pyc differ diff --git a/q02_fit/build.py b/q02_fit/build.py index 7a6602b..3d0f3c5 100644 --- a/q02_fit/build.py +++ b/q02_fit/build.py @@ -1,3 +1,4 @@ +# %load q02_fit/build.py # Default imports import pandas as pd @@ -18,9 +19,10 @@ "max_depth": [40, 20, 10], "max_leaf_nodes": [5, 10, 2]} -grid, grid_param, grid_score = grid_search(X_train, y_train, rfc, param_grid, cv=3) - - -# Write your solution here : - +def fit(X_test,y_test): + grid, grid_param, grid_score = grid_search(X_train, y_train, rfc, param_grid, cv=3) + grid.fit(X_train,y_train) + y_pred = grid.predict(X_test) + return confusion_matrix(y_test,y_pred), classification_report(y_test,y_pred), accuracy_score(y_test,y_pred) +#fit(X_test,y_test) diff --git a/q02_fit/build.pyc b/q02_fit/build.pyc index 2fc63d1..19441f7 100644 Binary files a/q02_fit/build.pyc and b/q02_fit/build.pyc differ diff --git a/q02_fit/tests/__init__.pyc b/q02_fit/tests/__init__.pyc index c6d3bed..cb7739d 100644 Binary files a/q02_fit/tests/__init__.pyc and b/q02_fit/tests/__init__.pyc differ diff --git a/q02_fit/tests/test_q02_fit.pyc b/q02_fit/tests/test_q02_fit.pyc index 1bdabb1..3a9dba2 100644 Binary files a/q02_fit/tests/test_q02_fit.pyc and b/q02_fit/tests/test_q02_fit.pyc differ