diff --git a/__pycache__/__init__.cpython-36.pyc b/__pycache__/__init__.cpython-36.pyc index 14812de..c60d2a4 100644 Binary files a/__pycache__/__init__.cpython-36.pyc and b/__pycache__/__init__.cpython-36.pyc differ diff --git a/q01_grid_search/__pycache__/__init__.cpython-36.pyc b/q01_grid_search/__pycache__/__init__.cpython-36.pyc index 9413fbb..9ae0d26 100644 Binary files a/q01_grid_search/__pycache__/__init__.cpython-36.pyc and b/q01_grid_search/__pycache__/__init__.cpython-36.pyc differ diff --git a/q01_grid_search/__pycache__/build.cpython-36.pyc b/q01_grid_search/__pycache__/build.cpython-36.pyc index dbd3e7a..e2de607 100644 Binary files a/q01_grid_search/__pycache__/build.cpython-36.pyc and b/q01_grid_search/__pycache__/build.cpython-36.pyc differ diff --git a/q01_grid_search/build.py b/q01_grid_search/build.py index 20c99a1..7c8fffb 100644 --- a/q01_grid_search/build.py +++ b/q01_grid_search/build.py @@ -1,7 +1,8 @@ +# %load q01_grid_search/build.py # Default imports import warnings -warnings.filterwarnings("ignore") +warnings.filterwarnings('ignore') import pandas as pd from sklearn.model_selection import train_test_split from sklearn.ensemble import RandomForestClassifier @@ -12,11 +13,22 @@ y_bal = loan_data.iloc[:, -1] X_train, X_test, y_train, y_test = train_test_split(X_bal, y_bal, test_size=0.33, random_state=9) -param_grid = {"max_features": ['sqrt', 4, "log2"], - "n_estimators": [10, 50, 120], - "max_depth": [40, 20, 10], - "max_leaf_nodes": [5, 10, 2]} +param_grid = {'max_features': ['sqrt', 4, 'log2'], + 'n_estimators': [10, 50, 120], + 'max_depth': [40, 20, 10], + 'max_leaf_nodes': [5, 10, 2]} # Write your solution here : +rfc = RandomForestClassifier(oob_score=True, random_state=9) + +def grid_search(X_train,y_train,model,param_grid,cv = 3): + grid = GridSearchCV(model,param_grid,scoring='accuracy',cv = 3) + grid.fit(X_train,y_train) + grid_param = grid.cv_results_['params'] + grid_score = grid.cv_results_['mean_test_score'] + return grid, grid_param, grid_score + +# grid_search(X_bal,y_bal,rfc,param_grid,cv = 3) + diff --git a/q01_grid_search/tests/__pycache__/__init__.cpython-36.pyc b/q01_grid_search/tests/__pycache__/__init__.cpython-36.pyc index 5cb0753..f5389c4 100644 Binary files a/q01_grid_search/tests/__pycache__/__init__.cpython-36.pyc and b/q01_grid_search/tests/__pycache__/__init__.cpython-36.pyc differ diff --git a/q01_grid_search/tests/__pycache__/test_q01_grid_search.cpython-36.pyc b/q01_grid_search/tests/__pycache__/test_q01_grid_search.cpython-36.pyc index 6061f23..dac2871 100644 Binary files a/q01_grid_search/tests/__pycache__/test_q01_grid_search.cpython-36.pyc and b/q01_grid_search/tests/__pycache__/test_q01_grid_search.cpython-36.pyc differ diff --git a/q02_fit/__pycache__/__init__.cpython-36.pyc b/q02_fit/__pycache__/__init__.cpython-36.pyc index 7d3ab26..b98a8e4 100644 Binary files a/q02_fit/__pycache__/__init__.cpython-36.pyc and b/q02_fit/__pycache__/__init__.cpython-36.pyc differ diff --git a/q02_fit/__pycache__/build.cpython-36.pyc b/q02_fit/__pycache__/build.cpython-36.pyc index 87b2785..c8dfd4f 100644 Binary files a/q02_fit/__pycache__/build.cpython-36.pyc and b/q02_fit/__pycache__/build.cpython-36.pyc differ diff --git a/q02_fit/build.py b/q02_fit/build.py index fbafb1a..5a17eb8 100644 --- a/q02_fit/build.py +++ b/q02_fit/build.py @@ -1,3 +1,4 @@ +# %load q02_fit/build.py # Default imports import pandas as pd @@ -13,15 +14,23 @@ X_train, X_test, y_train, y_test = train_test_split(X_bal, y_bal, test_size=0.33, random_state=9) rfc = RandomForestClassifier(oob_score=True, random_state=9) -param_grid = {"max_features": ['sqrt', 4, "log2"], - "n_estimators": [10, 50, 120], - "max_depth": [40, 20, 10], - "max_leaf_nodes": [5, 10, 2]} +param_grid = {'max_features': ['sqrt', 4, 'log2'], + 'n_estimators': [10, 50, 120], + 'max_depth': [40, 20, 10], + 'max_leaf_nodes': [5, 10, 2]} grid, grid_param, grid_score = grid_search(X_train, y_train, rfc, param_grid, cv=3) # Write your solution here : +def fit(X_test, y_test): + y_pred = grid.predict(X_test) + cm = confusion_matrix(y_test,y_pred) + cr = classification_report(y_test,y_pred) + acs = accuracy_score(y_test,y_pred) + return cm,cr,acs + +# fit(X_test, y_test) diff --git a/q02_fit/tests/__pycache__/__init__.cpython-36.pyc b/q02_fit/tests/__pycache__/__init__.cpython-36.pyc index 5b1da02..e764dc5 100644 Binary files a/q02_fit/tests/__pycache__/__init__.cpython-36.pyc and b/q02_fit/tests/__pycache__/__init__.cpython-36.pyc differ diff --git a/q02_fit/tests/__pycache__/test_q02_fit.cpython-36.pyc b/q02_fit/tests/__pycache__/test_q02_fit.cpython-36.pyc index 3d64856..55e2fe1 100644 Binary files a/q02_fit/tests/__pycache__/test_q02_fit.cpython-36.pyc and b/q02_fit/tests/__pycache__/test_q02_fit.cpython-36.pyc differ