diff --git a/__pycache__/__init__.cpython-36.pyc b/__pycache__/__init__.cpython-36.pyc index 14812de..4ebc63a 100644 Binary files a/__pycache__/__init__.cpython-36.pyc and b/__pycache__/__init__.cpython-36.pyc differ diff --git a/q01_grid_search/__pycache__/__init__.cpython-36.pyc b/q01_grid_search/__pycache__/__init__.cpython-36.pyc index 9413fbb..c4472b0 100644 Binary files a/q01_grid_search/__pycache__/__init__.cpython-36.pyc and b/q01_grid_search/__pycache__/__init__.cpython-36.pyc differ diff --git a/q01_grid_search/__pycache__/build.cpython-36.pyc b/q01_grid_search/__pycache__/build.cpython-36.pyc index dbd3e7a..86c0dd9 100644 Binary files a/q01_grid_search/__pycache__/build.cpython-36.pyc and b/q01_grid_search/__pycache__/build.cpython-36.pyc differ diff --git a/q01_grid_search/build.py b/q01_grid_search/build.py index 20c99a1..255d523 100644 --- a/q01_grid_search/build.py +++ b/q01_grid_search/build.py @@ -1,8 +1,10 @@ +# %load q01_grid_search/build.py # Default imports import warnings -warnings.filterwarnings("ignore") +warnings.filterwarnings('ignore') import pandas as pd +import numpy as np from sklearn.model_selection import train_test_split from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import GridSearchCV @@ -12,11 +14,24 @@ y_bal = loan_data.iloc[:, -1] X_train, X_test, y_train, y_test = train_test_split(X_bal, y_bal, test_size=0.33, random_state=9) -param_grid = {"max_features": ['sqrt', 4, "log2"], - "n_estimators": [10, 50, 120], - "max_depth": [40, 20, 10], - "max_leaf_nodes": [5, 10, 2]} - +param_grid = {'max_features': ['sqrt', 4, 'log2'], + 'n_estimators': [10, 50, 120], + 'max_depth': [40, 20, 10], + 'max_leaf_nodes': [5, 10, 2]} +#acc_score = make_scorer(accuracy_score) # Write your solution here : +clf = RandomForestClassifier(random_state=9,oob_score=True) +model = GridSearchCV(clf,param_grid,cv=3) +def grid_search(X_train,y_train,model,param_grid,cv=3): + grid = GridSearchCV(estimator=clf,param_grid=param_grid,cv=3) + grid.fit(X_train,y_train) + #test_score = grid_obj.cv_results_['mean_test_score'] + #train_score = grid_obj.cv_results_['params'] + #param_values = sorted([str(x) for x in list(grid_obj.param_grid.items())[0][1]]) + #param_values.sort() + #x = np.arange(1,len(param_values)+1) + return grid,grid.cv_results_['params'],grid.cv_results_['mean_test_score'] + +grid_search(X_train,y_train,model,param_grid,cv=3) diff --git a/q01_grid_search/tests/__pycache__/__init__.cpython-36.pyc b/q01_grid_search/tests/__pycache__/__init__.cpython-36.pyc index 5cb0753..822a7c6 100644 Binary files a/q01_grid_search/tests/__pycache__/__init__.cpython-36.pyc and b/q01_grid_search/tests/__pycache__/__init__.cpython-36.pyc differ diff --git a/q01_grid_search/tests/__pycache__/test_q01_grid_search.cpython-36.pyc b/q01_grid_search/tests/__pycache__/test_q01_grid_search.cpython-36.pyc index 6061f23..211fe88 100644 Binary files a/q01_grid_search/tests/__pycache__/test_q01_grid_search.cpython-36.pyc and b/q01_grid_search/tests/__pycache__/test_q01_grid_search.cpython-36.pyc differ