Skip to content

Commit 2fe61d6

Browse files
author
davidcorteso
committed
Updated eqs in doc
1 parent 9d04089 commit 2fe61d6

File tree

1 file changed

+6
-9
lines changed

1 file changed

+6
-9
lines changed

doc/core_eqs.rst

Lines changed: 6 additions & 9 deletions
Original file line numberDiff line numberDiff line change
@@ -79,7 +79,7 @@ effective field is
7979
In the continuum limit the exchange energy can be written as
8080

8181
.. math::
82-
E_{ex} = \int_{V} A (\nabla \vec{m})^2 dx
82+
E_{ex} = \int_{V} A (\nabla \vec{m})^2 \mathrm{d}V
8383
8484
with :math:`V` as the volume of the system and :math:`A` the anisotropy constant
8585
in :math:`\text{J m}^{-1}`. Correspondingly, the effective
@@ -176,15 +176,15 @@ For bulk materials :math:`\vec{D}_{ij} = D \vec{r}_{ij}` and for interfacial DMI
176176
In the continuum limit the bulk DMI energy is written as
177177

178178
.. math::
179-
E_{\text{DMI}} = \int_\Omega D_a \vec{m} \cdot (\nabla \times \vec{m}) dx
179+
E_{\text{DMI}} = \int_V D_a \vec{m} \cdot (\nabla \times \vec{m}) \, \mathrm{d}V
180180
181-
where :math:`D_a = -D/a^2` and the effective field is
181+
where :math:`V` is the volume of the sample and :math:`D_a = -D/a^2`. The corresponding
182+
effective field is
182183

183184
.. math::
184185
\vec{H}=-\frac{2 D_a}{\mu_0 M_s} (\nabla \times \vec{m})
185186
186187
187-
188188
For the interfacial case, the effective field becomes,
189189

190190
.. math::
@@ -197,14 +197,11 @@ Compared with the effective field [PRB 88 184422]
197197
198198
where :math:`D_a = D/a^2`. Notice that there is no negative sign for the interfacial case.
199199

200-
In the micromagnetic code, it is also implemented DMI for materials with
200+
In the micromagnetic code, it is also implemented the DMI for materials with
201201
:math:`D_{2d}` symmetry. The energy of this interaction reads
202202

203203
.. math::
204-
E_{\text{DMI}} = D_a \vec{m} \cdot \left(
205-
\frac{\partial \vec{m}}{\partial x} \times \hat{x}
206-
- \frac{\partial \vec{m}}{\partial y} \times \hat{y}
207-
\right)
204+
E_{\text{DMI}} = \int_V D_a \vec{m} \cdot \left( \frac{\partial \vec{m}}{\partial x} \times \hat{x} - \frac{\partial \vec{m}}{\partial y} \times \hat{y} \right) \, \mathrm{d}V
208205
209206
where :math:`D_a` is the DMI constant.
210207

0 commit comments

Comments
 (0)