|
| 1 | +""" |
| 2 | +This example shows training of a simple GAN model with MNIST dataset using Gradient Accumulation and Advanced |
| 3 | +Optimization where you call optimizer steps manually. |
| 4 | +""" |
| 5 | + |
| 6 | +import os |
| 7 | +from dataclasses import dataclass |
| 8 | + |
| 9 | +import numpy as np |
| 10 | +import torch |
| 11 | +from torch import nn |
| 12 | +from torch.utils.data import DataLoader |
| 13 | +from torchvision import transforms |
| 14 | +from torchvision.datasets import MNIST |
| 15 | + |
| 16 | +from trainer import Trainer, TrainerConfig, TrainerModel |
| 17 | +from trainer.trainer import TrainerArgs |
| 18 | + |
| 19 | +is_cuda = torch.cuda.is_available() |
| 20 | + |
| 21 | + |
| 22 | +# pylint: skip-file |
| 23 | + |
| 24 | + |
| 25 | +class Generator(nn.Module): |
| 26 | + def __init__(self, latent_dim, img_shape): |
| 27 | + super().__init__() |
| 28 | + self.img_shape = img_shape |
| 29 | + |
| 30 | + def block(in_feat, out_feat, normalize=True): |
| 31 | + layers = [nn.Linear(in_feat, out_feat)] |
| 32 | + if normalize: |
| 33 | + layers.append(nn.BatchNorm1d(out_feat, 0.8)) |
| 34 | + layers.append(nn.LeakyReLU(0.2, inplace=True)) |
| 35 | + return layers |
| 36 | + |
| 37 | + self.model = nn.Sequential( |
| 38 | + *block(latent_dim, 128, normalize=False), |
| 39 | + *block(128, 256), |
| 40 | + *block(256, 512), |
| 41 | + *block(512, 1024), |
| 42 | + nn.Linear(1024, int(np.prod(img_shape))), |
| 43 | + nn.Tanh(), |
| 44 | + ) |
| 45 | + |
| 46 | + def forward(self, z): |
| 47 | + img = self.model(z) |
| 48 | + img = img.view(img.size(0), *self.img_shape) |
| 49 | + return img |
| 50 | + |
| 51 | + |
| 52 | +class Discriminator(nn.Module): |
| 53 | + def __init__(self, img_shape): |
| 54 | + super().__init__() |
| 55 | + |
| 56 | + self.model = nn.Sequential( |
| 57 | + nn.Linear(int(np.prod(img_shape)), 512), |
| 58 | + nn.LeakyReLU(0.2, inplace=True), |
| 59 | + nn.Linear(512, 256), |
| 60 | + nn.LeakyReLU(0.2, inplace=True), |
| 61 | + nn.Linear(256, 1), |
| 62 | + nn.Sigmoid(), |
| 63 | + ) |
| 64 | + |
| 65 | + def forward(self, img): |
| 66 | + img_flat = img.view(img.size(0), -1) |
| 67 | + validity = self.model(img_flat) |
| 68 | + |
| 69 | + return validity |
| 70 | + |
| 71 | + |
| 72 | +@dataclass |
| 73 | +class GANModelConfig(TrainerConfig): |
| 74 | + epochs: int = 1 |
| 75 | + print_step: int = 2 |
| 76 | + training_seed: int = 666 |
| 77 | + |
| 78 | + |
| 79 | +class GANModel(TrainerModel): |
| 80 | + def __init__(self): |
| 81 | + super().__init__() |
| 82 | + data_shape = (1, 28, 28) |
| 83 | + self.generator = Generator(latent_dim=100, img_shape=data_shape) |
| 84 | + self.discriminator = Discriminator(img_shape=data_shape) |
| 85 | + |
| 86 | + def forward(self, x): |
| 87 | + ... |
| 88 | + |
| 89 | + def optimize(self, batch, trainer): |
| 90 | + imgs, _ = batch |
| 91 | + |
| 92 | + # sample noise |
| 93 | + z = torch.randn(imgs.shape[0], 100) |
| 94 | + z = z.type_as(imgs) |
| 95 | + |
| 96 | + # train discriminator |
| 97 | + imgs_gen = self.generator(z) |
| 98 | + logits = self.discriminator(imgs_gen.detach()) |
| 99 | + fake = torch.zeros(imgs.size(0), 1) |
| 100 | + fake = fake.type_as(imgs) |
| 101 | + loss_fake = trainer.criterion(logits, fake) |
| 102 | + |
| 103 | + valid = torch.ones(imgs.size(0), 1) |
| 104 | + valid = valid.type_as(imgs) |
| 105 | + logits = self.discriminator(imgs) |
| 106 | + loss_real = trainer.criterion(logits, valid) |
| 107 | + loss_disc = (loss_real + loss_fake) / 2 |
| 108 | + |
| 109 | + # step dicriminator |
| 110 | + _, _ = self.scaled_backward(loss_disc, None, trainer, trainer.optimizer[0]) |
| 111 | + |
| 112 | + if trainer.total_steps_done % trainer.grad_accum_steps == 0: |
| 113 | + trainer.optimizer[0].step() |
| 114 | + trainer.optimizer[0].zero_grad() |
| 115 | + |
| 116 | + # train generator |
| 117 | + imgs_gen = self.generator(z) |
| 118 | + |
| 119 | + valid = torch.ones(imgs.size(0), 1) |
| 120 | + valid = valid.type_as(imgs) |
| 121 | + |
| 122 | + logits = self.discriminator(imgs_gen) |
| 123 | + loss_gen = trainer.criterion(logits, valid) |
| 124 | + |
| 125 | + # step generator |
| 126 | + _, _ = self.scaled_backward(loss_gen, None, trainer, trainer.optimizer[1]) |
| 127 | + if trainer.total_steps_done % trainer.grad_accum_steps == 0: |
| 128 | + trainer.optimizer[1].step() |
| 129 | + trainer.optimizer[1].zero_grad() |
| 130 | + return {"model_outputs": logits}, {"loss_gen": loss_gen, "loss_disc": loss_disc} |
| 131 | + |
| 132 | + @torch.no_grad() |
| 133 | + def eval_step(self, batch, criterion): |
| 134 | + imgs, _ = batch |
| 135 | + |
| 136 | + # sample noise |
| 137 | + z = torch.randn(imgs.shape[0], 100) |
| 138 | + z = z.type_as(imgs) |
| 139 | + |
| 140 | + imgs_gen = self.generator(z) |
| 141 | + valid = torch.ones(imgs.size(0), 1) |
| 142 | + valid = valid.type_as(imgs) |
| 143 | + |
| 144 | + logits = self.discriminator(imgs_gen) |
| 145 | + loss_gen = trainer.criterion(logits, valid) |
| 146 | + return {"model_outputs": logits}, {"loss_gen": loss_gen} |
| 147 | + |
| 148 | + def get_optimizer(self): |
| 149 | + discriminator_optimizer = torch.optim.Adam(self.discriminator.parameters(), lr=0.0001, betas=(0.5, 0.999)) |
| 150 | + generator_optimizer = torch.optim.Adam(self.generator.parameters(), lr=0.001, betas=(0.5, 0.999)) |
| 151 | + return [discriminator_optimizer, generator_optimizer] |
| 152 | + |
| 153 | + def get_criterion(self): |
| 154 | + return nn.BCELoss() |
| 155 | + |
| 156 | + def get_data_loader( |
| 157 | + self, config, assets, is_eval, samples, verbose, num_gpus, rank=0 |
| 158 | + ): # pylint: disable=unused-argument |
| 159 | + transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))]) |
| 160 | + dataset = MNIST(os.getcwd(), train=not is_eval, download=True, transform=transform) |
| 161 | + dataset.data = dataset.data[:64] |
| 162 | + dataset.targets = dataset.targets[:64] |
| 163 | + dataloader = DataLoader(dataset, batch_size=config.batch_size, drop_last=True, shuffle=True) |
| 164 | + return dataloader |
| 165 | + |
| 166 | + |
| 167 | +if __name__ == "__main__": |
| 168 | + |
| 169 | + config = GANModelConfig() |
| 170 | + config.batch_size = 64 |
| 171 | + config.grad_clip = None |
| 172 | + |
| 173 | + model = GANModel() |
| 174 | + trainer = Trainer(TrainerArgs(), config, model=model, output_path=os.getcwd(), gpu=0 if is_cuda else None) |
| 175 | + trainer.config.epochs = 10 |
| 176 | + trainer.fit() |
0 commit comments