Skip to content

Commit c5fc3b2

Browse files
authored
Merge pull request #2486 from chrisyeh96/patch-2
DOC: fix typos in likelihood.py
2 parents 0bace60 + 1560c8d commit c5fc3b2

File tree

1 file changed

+22
-22
lines changed

1 file changed

+22
-22
lines changed

gpytorch/likelihoods/likelihood.py

+22-22
Original file line numberDiff line numberDiff line change
@@ -158,7 +158,7 @@ def _draw_likelihood_samples(
158158
with pyro.plate(plate_name, size=num_samples, dim=(-max_plate_nesting - 1)):
159159
if sample_shape is None:
160160
function_samples = pyro.sample(self.name_prefix, function_dist.mask(False))
161-
# Deal with the fact that we're not assuming conditional indendence over data points here
161+
# Deal with the fact that we're not assuming conditional independence over data points here
162162
function_samples = function_samples.squeeze(-len(function_dist.event_shape) - 1)
163163
else:
164164
sample_shape = sample_shape[: -len(function_dist.batch_shape)]
@@ -182,8 +182,8 @@ def expected_log_prob(
182182
183183
:param observations: Values of :math:`y`.
184184
:param function_dist: Distribution for :math:`f(x)`.
185-
:param args: Additional args (passed to the foward function).
186-
:param kwargs: Additional kwargs (passed to the foward function).
185+
:param args: Additional args (passed to the forward function).
186+
:param kwargs: Additional kwargs (passed to the forward function).
187187
"""
188188
return super().expected_log_prob(observations, function_dist, *args, **kwargs)
189189

@@ -225,8 +225,8 @@ def log_marginal(
225225
226226
:param observations: Values of :math:`y`.
227227
:param function_dist: Distribution for :math:`f(x)`.
228-
:param args: Additional args (passed to the foward function).
229-
:param kwargs: Additional kwargs (passed to the foward function).
228+
:param args: Additional args (passed to the forward function).
229+
:param kwargs: Additional kwargs (passed to the forward function).
230230
"""
231231
return super().log_marginal(observations, function_dist, *args, **kwargs)
232232

@@ -243,8 +243,8 @@ def marginal(self, function_dist: MultivariateNormal, *args: Any, **kwargs: Any)
243243
(co)variance of :math:`p(\mathbf f|...)`.
244244
245245
:param function_dist: Distribution for :math:`f(x)`.
246-
:param args: Additional args (passed to the foward function).
247-
:param kwargs: Additional kwargs (passed to the foward function).
246+
:param args: Additional args (passed to the forward function).
247+
:param kwargs: Additional kwargs (passed to the forward function).
248248
:return: The marginal distribution, or samples from it.
249249
"""
250250
return super().marginal(function_dist, *args, **kwargs)
@@ -259,8 +259,8 @@ def pyro_guide(self, function_dist: MultivariateNormal, target: Tensor, *args: A
259259
:param function_dist: Distribution of latent function
260260
:math:`q(\mathbf f)`.
261261
:param target: Observed :math:`\mathbf y`.
262-
:param args: Additional args (passed to the foward function).
263-
:param kwargs: Additional kwargs (passed to the foward function).
262+
:param args: Additional args (passed to the forward function).
263+
:param kwargs: Additional kwargs (passed to the forward function).
264264
"""
265265
with pyro.plate(self.name_prefix + ".data_plate", dim=-1):
266266
pyro.sample(self.name_prefix + ".f", function_dist)
@@ -276,8 +276,8 @@ def pyro_model(self, function_dist: MultivariateNormal, target: Tensor, *args: A
276276
:param function_dist: Distribution of latent function
277277
:math:`p(\mathbf f)`.
278278
:param target: Observed :math:`\mathbf y`.
279-
:param args: Additional args (passed to the foward function).
280-
:param kwargs: Additional kwargs (passed to the foward function).
279+
:param args: Additional args (passed to the forward function).
280+
:param kwargs: Additional kwargs (passed to the forward function).
281281
"""
282282
with pyro.plate(self.name_prefix + ".data_plate", dim=-1):
283283
function_samples = pyro.sample(self.name_prefix + ".f", function_dist)
@@ -324,17 +324,17 @@ def __call__(self, input: Union[Tensor, MultivariateNormal], *args: Any, **kwarg
324324
325325
# Analytic marginal computation - Bernoulli and Gaussian likelihoods only
326326
analytic_marginal_likelihood = gpytorch.likelihoods.GaussianLikelihood()
327-
marginal = analytic_marginal_likeihood(f)
327+
marginal = analytic_marginal_likelihood(f)
328328
print(type(marginal), marginal.batch_shape, marginal.event_shape)
329-
# >>> gpytorch.distributions.MultivariateNormal, torch.Size([]), torch.Size([20])
329+
# >>> <class 'gpytorch.distributions.multivariate_normal.MultivariateNormal'> torch.Size([]) torch.Size([20]) # noqa: E501
330330
331331
# MC marginal computation - all other likelihoods
332332
mc_marginal_likelihood = gpytorch.likelihoods.BetaLikelihood()
333333
with gpytorch.settings.num_likelihood_samples(15):
334-
marginal = analytic_marginal_likeihood(f)
334+
marginal = mc_marginal_likelihood(f)
335335
print(type(marginal), marginal.batch_shape, marginal.event_shape)
336-
# >>> torch.distributions.Beta, torch.Size([15, 20]), torch.Size([])
337-
# (The batch_shape of torch.Size([15, 20]) represents 15 MC samples for 20 data points.
336+
# >>> <class 'torch.distributions.beta.Beta'> torch.Size([15, 20]) torch.Size([])
337+
# The batch_shape torch.Size([15, 20]) represents 15 MC samples for 20 data points.
338338
339339
.. note::
340340
@@ -344,8 +344,8 @@ def __call__(self, input: Union[Tensor, MultivariateNormal], *args: Any, **kwarg
344344
345345
:param input: Either a (... x N) sample from :math:`\mathbf f`
346346
or a (... x N) MVN distribution of :math:`\mathbf f`.
347-
:param args: Additional args (passed to the foward function).
348-
:param kwargs: Additional kwargs (passed to the foward function).
347+
:param args: Additional args (passed to the forward function).
348+
:param kwargs: Additional kwargs (passed to the forward function).
349349
:return: Either a conditional :math:`p(\mathbf y \mid \mathbf f)`
350350
or marginal :math:`p(\mathbf y)`
351351
based on whether :attr:`input` is a Tensor or a MultivariateNormal (see above).
@@ -377,21 +377,21 @@ def __call__(self, input: Union[Tensor, MultivariateNormal], *args: Any, **kwarg
377377
class Likelihood(_Likelihood):
378378
@property
379379
def num_data(self) -> int:
380-
warnings.warn("num_data is only used for likehoods that are integrated with Pyro.", RuntimeWarning)
380+
warnings.warn("num_data is only used for likelihoods that are integrated with Pyro.", RuntimeWarning)
381381
return 0
382382

383383
@num_data.setter
384384
def num_data(self, val: int) -> None:
385-
warnings.warn("num_data is only used for likehoods that are integrated with Pyro.", RuntimeWarning)
385+
warnings.warn("num_data is only used for likelihoods that are integrated with Pyro.", RuntimeWarning)
386386

387387
@property
388388
def name_prefix(self) -> str:
389-
warnings.warn("name_prefix is only used for likehoods that are integrated with Pyro.", RuntimeWarning)
389+
warnings.warn("name_prefix is only used for likelihoods that are integrated with Pyro.", RuntimeWarning)
390390
return ""
391391

392392
@name_prefix.setter
393393
def name_prefix(self, val: str) -> None:
394-
warnings.warn("name_prefix is only used for likehoods that are integrated with Pyro.", RuntimeWarning)
394+
warnings.warn("name_prefix is only used for likelihoods that are integrated with Pyro.", RuntimeWarning)
395395

396396

397397
class _OneDimensionalLikelihood(Likelihood, ABC):

0 commit comments

Comments
 (0)