Skip to content

Commit 7bb73e7

Browse files
committed
Add ruff configuration and apply autofixes
1 parent 67a90cc commit 7bb73e7

File tree

4 files changed

+26
-12
lines changed

4 files changed

+26
-12
lines changed

Diff for: k_diffusion/augmentation.py

+1-1
Original file line numberDiff line numberDiff line change
@@ -93,7 +93,7 @@ class KarrasAugmentWrapper(nn.Module):
9393
def __init__(self, model):
9494
super().__init__()
9595
self.inner_model = model
96-
96+
9797
def forward(self, input, sigma, aug_cond=None, mapping_cond=None, **kwargs):
9898
if aug_cond is None:
9999
aug_cond = input.new_zeros([input.shape[0], 9])

Diff for: k_diffusion/external.py

+6-6
Original file line numberDiff line numberDiff line change
@@ -27,14 +27,14 @@ def t_to_sigma(self, t):
2727
return (t * math.pi / 2).tan()
2828

2929
def loss(self, input, noise, sigma, **kwargs):
30-
c_skip, c_out, c_in = [utils.append_dims(x, input.ndim) for x in self.get_scalings(sigma)]
30+
c_skip, c_out, c_in = (utils.append_dims(x, input.ndim) for x in self.get_scalings(sigma))
3131
noised_input = input + noise * utils.append_dims(sigma, input.ndim)
3232
model_output = self.inner_model(noised_input * c_in, self.sigma_to_t(sigma), **kwargs)
3333
target = (input - c_skip * noised_input) / c_out
3434
return (model_output - target).pow(2).flatten(1).mean(1)
3535

3636
def forward(self, input, sigma, **kwargs):
37-
c_skip, c_out, c_in = [utils.append_dims(x, input.ndim) for x in self.get_scalings(sigma)]
37+
c_skip, c_out, c_in = (utils.append_dims(x, input.ndim) for x in self.get_scalings(sigma))
3838
return self.inner_model(input * c_in, self.sigma_to_t(sigma), **kwargs) * c_out + input * c_skip
3939

4040

@@ -102,13 +102,13 @@ def get_eps(self, *args, **kwargs):
102102
return self.inner_model(*args, **kwargs)
103103

104104
def loss(self, input, noise, sigma, **kwargs):
105-
c_out, c_in = [utils.append_dims(x, input.ndim) for x in self.get_scalings(sigma)]
105+
c_out, c_in = (utils.append_dims(x, input.ndim) for x in self.get_scalings(sigma))
106106
noised_input = input + noise * utils.append_dims(sigma, input.ndim)
107107
eps = self.get_eps(noised_input * c_in, self.sigma_to_t(sigma), **kwargs)
108108
return (eps - noise).pow(2).flatten(1).mean(1)
109109

110110
def forward(self, input, sigma, **kwargs):
111-
c_out, c_in = [utils.append_dims(x, input.ndim) for x in self.get_scalings(sigma)]
111+
c_out, c_in = (utils.append_dims(x, input.ndim) for x in self.get_scalings(sigma))
112112
eps = self.get_eps(input * c_in, self.sigma_to_t(sigma), **kwargs)
113113
return input + eps * c_out
114114

@@ -156,14 +156,14 @@ def get_v(self, *args, **kwargs):
156156
return self.inner_model(*args, **kwargs)
157157

158158
def loss(self, input, noise, sigma, **kwargs):
159-
c_skip, c_out, c_in = [utils.append_dims(x, input.ndim) for x in self.get_scalings(sigma)]
159+
c_skip, c_out, c_in = (utils.append_dims(x, input.ndim) for x in self.get_scalings(sigma))
160160
noised_input = input + noise * utils.append_dims(sigma, input.ndim)
161161
model_output = self.get_v(noised_input * c_in, self.sigma_to_t(sigma), **kwargs)
162162
target = (input - c_skip * noised_input) / c_out
163163
return (model_output - target).pow(2).flatten(1).mean(1)
164164

165165
def forward(self, input, sigma, **kwargs):
166-
c_skip, c_out, c_in = [utils.append_dims(x, input.ndim) for x in self.get_scalings(sigma)]
166+
c_skip, c_out, c_in = (utils.append_dims(x, input.ndim) for x in self.get_scalings(sigma))
167167
return self.get_v(input * c_in, self.sigma_to_t(sigma), **kwargs) * c_out + input * c_skip
168168

169169

Diff for: k_diffusion/layers.py

+5-5
Original file line numberDiff line numberDiff line change
@@ -73,7 +73,7 @@ def get_scalings(self, sigma):
7373
return c_skip, c_out, c_in
7474

7575
def loss(self, input, noise, sigma, **kwargs):
76-
c_skip, c_out, c_in = [utils.append_dims(x, input.ndim) for x in self.get_scalings(sigma)]
76+
c_skip, c_out, c_in = (utils.append_dims(x, input.ndim) for x in self.get_scalings(sigma))
7777
c_weight = self.weighting(sigma)
7878
noised_input = input + noise * utils.append_dims(sigma, input.ndim)
7979
model_output = self.inner_model(noised_input * c_in, sigma, **kwargs)
@@ -85,13 +85,13 @@ def loss(self, input, noise, sigma, **kwargs):
8585
return (sq_error * f_weight).flatten(1).mean(1) * c_weight
8686

8787
def forward(self, input, sigma, **kwargs):
88-
c_skip, c_out, c_in = [utils.append_dims(x, input.ndim) for x in self.get_scalings(sigma)]
88+
c_skip, c_out, c_in = (utils.append_dims(x, input.ndim) for x in self.get_scalings(sigma))
8989
return self.inner_model(input * c_in, sigma, **kwargs) * c_out + input * c_skip
9090

9191

9292
class DenoiserWithVariance(Denoiser):
9393
def loss(self, input, noise, sigma, **kwargs):
94-
c_skip, c_out, c_in = [utils.append_dims(x, input.ndim) for x in self.get_scalings(sigma)]
94+
c_skip, c_out, c_in = (utils.append_dims(x, input.ndim) for x in self.get_scalings(sigma))
9595
noised_input = input + noise * utils.append_dims(sigma, input.ndim)
9696
model_output, logvar = self.inner_model(noised_input * c_in, sigma, return_variance=True, **kwargs)
9797
logvar = utils.append_dims(logvar, model_output.ndim)
@@ -234,10 +234,10 @@ def forward(self, input, cond):
234234
_kernels = {
235235
'linear':
236236
[1 / 8, 3 / 8, 3 / 8, 1 / 8],
237-
'cubic':
237+
'cubic':
238238
[-0.01171875, -0.03515625, 0.11328125, 0.43359375,
239239
0.43359375, 0.11328125, -0.03515625, -0.01171875],
240-
'lanczos3':
240+
'lanczos3':
241241
[0.003689131001010537, 0.015056144446134567, -0.03399861603975296,
242242
-0.066637322306633, 0.13550527393817902, 0.44638532400131226,
243243
0.44638532400131226, 0.13550527393817902, -0.066637322306633,

Diff for: pyproject.toml

+14
Original file line numberDiff line numberDiff line change
@@ -1,3 +1,17 @@
11
[build-system]
22
requires = ["setuptools"]
33
build-backend = "setuptools.build_meta"
4+
5+
[tool.ruff]
6+
target-version = "py38"
7+
8+
select = [
9+
"B",
10+
"E",
11+
"F",
12+
"W",
13+
"UP",
14+
]
15+
ignore = [
16+
"E501",
17+
]

0 commit comments

Comments
 (0)