-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathget-error.py
67 lines (50 loc) · 2.07 KB
/
get-error.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
# This script should be run after generating the data
apps=['CU', 'ST', 'CP', 'MM', 'UT', 'UT-A', 'SC', 'RD', 'HS', 'PL', 'MG']
data = {}
paper_data = {}
def mean(data):
return round(float(sum(data)/len(data)), 3)
def get_data(file_path):
f = open(file_path, 'r')
data = []
for line in f.readlines():
data.append(float(line.rstrip()))
return mean(data)
def get_float(val):
return float(val.strip())
def set_paper_data():
# Get from run in the paper
f = open('paper_data', 'r')
for line in f.readlines():
# CSV, each line is a float, first app
vals = line.rstrip().split(",")
app = vals[0].strip()
paper_app_data = {'baseline': get_float(vals[1]), 'naive': get_float(vals[2]), 'para': get_float(vals[3]), 'para+sampling': get_float(vals[4]), 'scopeadvice': get_float(vals[5])}
paper_data[app] = paper_app_data
# Get data used in the paper
set_paper_data()
# Get and process the data generated from the script
for app in apps:
# Each app will have an eval folder, with baseline, blank (nvbit) and 1 folder for each bar
# Extract all the data
baseline = get_data('./' + app + '/eval/baseline.out')
nvbit = get_data('./' + app + '/eval/blank.out')
onet1b = get_data('./' + app + '/eval/1t1b.out')
twelvetnb = get_data('./' + app + '/eval/12tnb.out')
samp = get_data('./' + app + '/eval/sampling.out')
sa = get_data('./' + app + '/eval/scopeadvice.out')
app_data = {'baseline': baseline, 'naive': onet1b, 'para': twelvetnb, 'para+sampling': samp, 'scopeadvice': sa}
data[app] = app_data
# For each app --- do comparison
max_err = 0
margin = 10 # %
for app in apps:
for key in data[app].keys():
paper_val = paper_data[app][key]
expt_val = data[app][key]
# expt_val should not be more than 10% of paper_val
err = round((expt_val - paper_val) / paper_val, 3) * 100
if err > margin:
print(f"{app}:{key} beyond {margin}% margin ({err}%)")
max_err = max(err, max_err)
# print(f"Max error comparing to paper results: {max_err} %")