Skip to content

Commit e494da1

Browse files
authored
Merge pull request #86 from alxndrkalinin/fix_examples
v0.5.1
2 parents 51649b8 + 37bdb51 commit e494da1

12 files changed

+206
-139
lines changed

.gitignore

+1
Original file line numberDiff line numberDiff line change
@@ -160,4 +160,5 @@ cython_debug/
160160
#.idea/
161161

162162
examples/data/
163+
examples/cache/
163164
.vscode/

README.md

+2-2
Original file line numberDiff line numberDiff line change
@@ -46,13 +46,13 @@ We provide examples demonstrating how to use copairs for:
4646
## Citation
4747
If you find this work useful for your research, please cite our [pre-print](https://doi.org/10.1101/2024.04.01.587631):
4848

49-
Kalinin, A.A., Arevalo, J., Vulliard, L., Serrano, E., Tsang, H., Bornholdt, M., Rajwa, B., Carpenter, A.E., Way, G.P. and Singh, S., 2024. A versatile information retrieval framework for evaluating profile strength and similarity. bioRxiv, pp.2024-04. doi:10.1101/2024.04.01.587631
49+
Kalinin, A.A., Arevalo, J., Vulliard, L., Serrano, E., Tsang, H., Bornholdt, M., Muñoz, A.F., Sivagurunathan, S., Rajwa, B., Carpenter, A.E., Way, G.P. and Singh, S., 2024. A versatile information retrieval framework for evaluating profile strength and similarity. bioRxiv, pp.2024-04. doi:10.1101/2024.04.01.587631
5050

5151
BibTeX:
5252
```
5353
@article{kalinin2024versatile,
5454
title={A versatile information retrieval framework for evaluating profile strength and similarity},
55-
author={Kalinin, Alexandr A and Arevalo, John and Vulliard, Loan and Serrano, Erik and Tsang, Hillary and Bornholdt, Michael and Rajwa, Bartek and Carpenter, Anne E and Way, Gregory P and Singh, Shantanu},
55+
author={Kalinin, Alexandr A and Arevalo, John and Vulliard, Loan and Serrano, Erik and Tsang, Hillary and Bornholdt, Michael and Muñoz, Alán F and Sivagurunathan, Suganya and Rajwa, Bartek and Carpenter, Anne E and Way, Gregory P and Singh, Shantanu},
5656
journal={bioRxiv},
5757
pages={2024--04},
5858
year={2024},

examples/null_size.ipynb

+32-27
Original file line numberDiff line numberDiff line change
@@ -185,7 +185,7 @@
185185
{
186186
"data": {
187187
"application/vnd.jupyter.widget-view+json": {
188-
"model_id": "9738b6f4faa64847aac316120975c9fd",
188+
"model_id": "98a5410c76d04b30a59c1e96909fa675",
189189
"version_major": 2,
190190
"version_minor": 0
191191
},
@@ -199,7 +199,7 @@
199199
{
200200
"data": {
201201
"application/vnd.jupyter.widget-view+json": {
202-
"model_id": "3a5ff0b3fb384c4f95baa77a66b504d7",
202+
"model_id": "a5882a4e63ba4a2da14f8c25e5e2c451",
203203
"version_major": 2,
204204
"version_minor": 0
205205
},
@@ -213,7 +213,7 @@
213213
{
214214
"data": {
215215
"application/vnd.jupyter.widget-view+json": {
216-
"model_id": "1412262fdfca4de5a0ac2968e37defc1",
216+
"model_id": "3f7dea536b344dc4a0cf07e4e2f94436",
217217
"version_major": 2,
218218
"version_minor": 0
219219
},
@@ -227,7 +227,7 @@
227227
{
228228
"data": {
229229
"application/vnd.jupyter.widget-view+json": {
230-
"model_id": "2f3bce275fab434ba1e045908ac56188",
230+
"model_id": "d8108b62de1b4127967c1184f4e14ec5",
231231
"version_major": 2,
232232
"version_minor": 0
233233
},
@@ -241,7 +241,7 @@
241241
{
242242
"data": {
243243
"application/vnd.jupyter.widget-view+json": {
244-
"model_id": "31504e9ab9334054a5c1fa9244b00461",
244+
"model_id": "71c8c110a0694b5a9c1925011d64bc29",
245245
"version_major": 2,
246246
"version_minor": 0
247247
},
@@ -255,7 +255,7 @@
255255
{
256256
"data": {
257257
"application/vnd.jupyter.widget-view+json": {
258-
"model_id": "df3ee4295bf14a0fbbd3edc9b9bbce43",
258+
"model_id": "e6d5a7adab3643dcb1638b3bc617f354",
259259
"version_major": 2,
260260
"version_minor": 0
261261
},
@@ -269,7 +269,7 @@
269269
{
270270
"data": {
271271
"application/vnd.jupyter.widget-view+json": {
272-
"model_id": "71e241775fd74abfa4e8403d365f8136",
272+
"model_id": "de529c15360f45948e04127c88135f16",
273273
"version_major": 2,
274274
"version_minor": 0
275275
},
@@ -283,7 +283,7 @@
283283
{
284284
"data": {
285285
"application/vnd.jupyter.widget-view+json": {
286-
"model_id": "bc2e1817be6b4207af2458943e547500",
286+
"model_id": "370a8fd49b874cc0aa4599416b087f7f",
287287
"version_major": 2,
288288
"version_minor": 0
289289
},
@@ -297,7 +297,7 @@
297297
{
298298
"data": {
299299
"application/vnd.jupyter.widget-view+json": {
300-
"model_id": "e66adb85c1f74eaf87efae66dbbd644a",
300+
"model_id": "5d0f64f1871746a4be91ca50ee8da395",
301301
"version_major": 2,
302302
"version_minor": 0
303303
},
@@ -311,7 +311,7 @@
311311
{
312312
"data": {
313313
"application/vnd.jupyter.widget-view+json": {
314-
"model_id": "8b390b25b8964592bf479b42a6320d06",
314+
"model_id": "f1c498718ebf467fafa9f1a5860156fb",
315315
"version_major": 2,
316316
"version_minor": 0
317317
},
@@ -325,7 +325,7 @@
325325
{
326326
"data": {
327327
"application/vnd.jupyter.widget-view+json": {
328-
"model_id": "8dace7243c3841cc9898fe6d304ed3ed",
328+
"model_id": "2f565faa215142dd8c0d4d477eba412a",
329329
"version_major": 2,
330330
"version_minor": 0
331331
},
@@ -339,7 +339,7 @@
339339
{
340340
"data": {
341341
"application/vnd.jupyter.widget-view+json": {
342-
"model_id": "44c48e472c6f4d5eaf3d558a8acb4519",
342+
"model_id": "bfbde159bfd64bd18d62358f694db31b",
343343
"version_major": 2,
344344
"version_minor": 0
345345
},
@@ -353,7 +353,7 @@
353353
{
354354
"data": {
355355
"application/vnd.jupyter.widget-view+json": {
356-
"model_id": "aba7957fbbf74fd78474030d6d7cd63a",
356+
"model_id": "3f9a18859a1243ea9f291e81574583ad",
357357
"version_major": 2,
358358
"version_minor": 0
359359
},
@@ -367,7 +367,7 @@
367367
{
368368
"data": {
369369
"application/vnd.jupyter.widget-view+json": {
370-
"model_id": "1289bf5d7e61407e87169aba69b4bb54",
370+
"model_id": "28e949a9495e4c9db59eba1bf5a488c6",
371371
"version_major": 2,
372372
"version_minor": 0
373373
},
@@ -381,7 +381,7 @@
381381
{
382382
"data": {
383383
"application/vnd.jupyter.widget-view+json": {
384-
"model_id": "7534620ff82e4520995023f3830514f8",
384+
"model_id": "b78cd24410064bdea1e9104eed78a372",
385385
"version_major": 2,
386386
"version_minor": 0
387387
},
@@ -395,7 +395,7 @@
395395
{
396396
"data": {
397397
"application/vnd.jupyter.widget-view+json": {
398-
"model_id": "8afdd30c664742769161be671d05902f",
398+
"model_id": "9ab9e9d8efb64b68b64266f13dbc516d",
399399
"version_major": 2,
400400
"version_minor": 0
401401
},
@@ -409,7 +409,7 @@
409409
{
410410
"data": {
411411
"application/vnd.jupyter.widget-view+json": {
412-
"model_id": "4292e6701ae845e2b77eea11bbdb25b5",
412+
"model_id": "bc2c40c409274b378395f23bcd8aed4d",
413413
"version_major": 2,
414414
"version_minor": 0
415415
},
@@ -423,7 +423,7 @@
423423
{
424424
"data": {
425425
"application/vnd.jupyter.widget-view+json": {
426-
"model_id": "822431e328954a908c068da8b2bf124d",
426+
"model_id": "15c6eaf126374babb2c757c93b6dcfb9",
427427
"version_major": 2,
428428
"version_minor": 0
429429
},
@@ -437,7 +437,7 @@
437437
{
438438
"data": {
439439
"application/vnd.jupyter.widget-view+json": {
440-
"model_id": "86c4b77801b548a2a6ee90abea3e8b0e",
440+
"model_id": "769ed6f0be494e5696b15b4334e8edf8",
441441
"version_major": 2,
442442
"version_minor": 0
443443
},
@@ -451,7 +451,7 @@
451451
{
452452
"data": {
453453
"application/vnd.jupyter.widget-view+json": {
454-
"model_id": "99c2fb7c7ab04103bcd8938f96aa5111",
454+
"model_id": "1a15d7bb96f84429bb513f1458de3e93",
455455
"version_major": 2,
456456
"version_minor": 0
457457
},
@@ -465,7 +465,7 @@
465465
{
466466
"data": {
467467
"application/vnd.jupyter.widget-view+json": {
468-
"model_id": "dfc7b6b9ba654496be0bcefe5f717f59",
468+
"model_id": "6998d02b1fc546c1808232bb398b3b1a",
469469
"version_major": 2,
470470
"version_minor": 0
471471
},
@@ -479,7 +479,7 @@
479479
{
480480
"data": {
481481
"application/vnd.jupyter.widget-view+json": {
482-
"model_id": "c2f45921939d4742a0d5254e404a015b",
482+
"model_id": "3b3250fa2e2d4688a6834105e57226c0",
483483
"version_major": 2,
484484
"version_minor": 0
485485
},
@@ -493,7 +493,7 @@
493493
{
494494
"data": {
495495
"application/vnd.jupyter.widget-view+json": {
496-
"model_id": "14627090dac345a695601984a5ec128a",
496+
"model_id": "2a92717d58b6495186a975d5ddf858c1",
497497
"version_major": 2,
498498
"version_minor": 0
499499
},
@@ -507,7 +507,7 @@
507507
{
508508
"data": {
509509
"application/vnd.jupyter.widget-view+json": {
510-
"model_id": "5e7980c5c222436d895c64f85104de83",
510+
"model_id": "507d3b9a1f89420082741923b12f258f",
511511
"version_major": 2,
512512
"version_minor": 0
513513
},
@@ -570,16 +570,21 @@
570570
"cell_type": "markdown",
571571
"metadata": {},
572572
"source": [
573-
"Because the full null size $d_{null}=118755$, smaller sample sizes ($<5,000$) lead to poor estimation of significance for these data, while very large values ($>100,000$) cover the whole null and do not affect perturbation ranking results.\n",
573+
"Because the full null size $d_{null}=118755$, smaller sample sizes ($<=1,000$) lead to poor estimation of significance for these data, while very large values ($>100,000$) cover the whole null and do not affect perturbation ranking results.\n",
574574
"\n",
575-
"## Practical consideration for choosing null size\n",
575+
"## Practical consideration for choosing the null size\n",
576576
"\n",
577577
"In practice, drawing a large number of samples is not always feasible, because compute time for each AP calculation grows with the higher number of perturbations of the dataset, the number of metadata constraints for profile grouping, sizes of perturbation groups (the number of perturbation replicates) and control groups (the number of control replicates), and profile dimensionality (the number of features in a profile).\n",
578578
"\n",
579-
"Finding a `null_size` that works for a particular dataset is balancing between test resolution (for example, being able to tell apart vary small p-values) and compute. We provided `null_size` values for each real-world dataset in Supplemental Materials to our paper—please refer to:\n",
579+
"Finding a `null_size` that works for a particular dataset means balancing between test resolution (for example, being able to tell apart vary small p-values) and compute. We provided `null_size` values for each real-world dataset in Supplemental Materials to our paper—please refer to:\n",
580580
"\n",
581581
"> Kalinin, A. A. et al. A versatile information retrieval framework for evaluating profile strength and similarity. bioRxiv, 2024-04, (2024)."
582582
]
583+
},
584+
{
585+
"cell_type": "markdown",
586+
"metadata": {},
587+
"source": []
583588
}
584589
],
585590
"metadata": {

0 commit comments

Comments
 (0)