|
17 | 17 |
|
18 | 18 | from anndata import AnnData |
19 | 19 |
|
20 | | -# from ..util import confirm_proteins_as_obs |
21 | | - |
22 | 20 |
|
23 | 21 | def filter_samples( |
24 | 22 | data: AnnData | spmatrix | np.ndarray | DaskArray, |
@@ -58,8 +56,6 @@ def filter_samples( |
58 | 56 | * AnnData if input is AnnData and ``inplace=False`` |
59 | 57 | * A tuple of arrays (``retained_samples``, ``retained_proteins``) if input is not AnnData |
60 | 58 | """ |
61 | | - # if isinstance(data, AnnData): |
62 | | - # confirm_proteins_as_obs(data) |
63 | 59 |
|
64 | 60 | return sc.pp.filter_genes( |
65 | 61 | data, |
@@ -110,8 +106,6 @@ def filter_proteins( |
110 | 106 | * AnnData if input is AnnData and ``inplace=False`` |
111 | 107 | * A tuple of arrays ``(retained_proteins, retained_samples)`` if input is not AnnData |
112 | 108 | """ |
113 | | - # if isinstance(data, AnnData): |
114 | | - # confirm_proteins_as_obs(data) |
115 | 109 |
|
116 | 110 | return sc.pp.filter_cells( |
117 | 111 | data, |
@@ -226,7 +220,6 @@ def filter_proteins_per_replicate( |
226 | 220 | detected in at least ``min_replicates`` samples. The protein must pass this threshold |
227 | 221 | in at least ``min_samples`` groups to be kept. |
228 | 222 | """ |
229 | | - # confirm_proteins_as_obs(data) |
230 | 223 | groups = data.var.groupby(grouping_columns) |
231 | 224 | protein_subset = np.repeat(0, repeats=data.n_obs) |
232 | 225 | for _, g in groups: |
@@ -303,7 +296,6 @@ def remove_contaminants( |
303 | 296 | * If `inplace=True`, returns None. |
304 | 297 | """ |
305 | 298 |
|
306 | | - # confirm_proteins_as_obs(data) |
307 | 299 | if filter_columns is None: |
308 | 300 | filter_columns = data.uns["RawInfo"]["filter_columns"] |
309 | 301 | elif isinstance(filter_columns, str): |
@@ -529,7 +521,6 @@ def calculate_qc_metrics( |
529 | 521 | * `sample_qc_metrics`: ``pd.DataFrame`` with sample-wise QC metrics |
530 | 522 | """ |
531 | 523 |
|
532 | | - # confirm_proteins_as_obs(data) |
533 | 524 | dfs = sc.pp.calculate_qc_metrics( |
534 | 525 | data.copy().T, |
535 | 526 | expr_type=expr_type, |
@@ -602,7 +593,6 @@ def highly_variable_proteins( |
602 | 593 | * ``dispersions``: dispersion of expression |
603 | 594 | * ``dispersions_norm``: normalized dispersion |
604 | 595 | """ |
605 | | - # confirm_proteins_as_obs(data) |
606 | 596 | df = sc.pp.highly_variable_genes( |
607 | 597 | data.T, inplace=False, n_top_genes=n_top_proteins, **kwargs |
608 | 598 | ) |
|
0 commit comments