Skip to content

Commit b54e0f2

Browse files
authored
Rename Epanechikov kernel to Triangular
1 parent 23d7a5a commit b54e0f2

File tree

1 file changed

+7
-7
lines changed

1 file changed

+7
-7
lines changed

chapter_attention-mechanisms-and-transformers/attention-pooling.md

Lines changed: 7 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -8,7 +8,7 @@ At their core, Nadaraya--Watson estimators rely on some similarity kernel $\alph
88
$$\begin{aligned}
99
\alpha(\mathbf{q}, \mathbf{k}) & = \exp\left(-\frac{1}{2} \|\mathbf{q} - \mathbf{k}\|^2 \right) && \textrm{Gaussian;} \\
1010
\alpha(\mathbf{q}, \mathbf{k}) & = 1 \textrm{ if } \|\mathbf{q} - \mathbf{k}\| \leq 1 && \textrm{Boxcar;} \\
11-
\alpha(\mathbf{q}, \mathbf{k}) & = \mathop{\mathrm{max}}\left(0, 1 - \|\mathbf{q} - \mathbf{k}\|\right) && \textrm{Epanechikov.}
11+
\alpha(\mathbf{q}, \mathbf{k}) & = \mathop{\mathrm{max}}\left(0, 1 - \|\mathbf{q} - \mathbf{k}\|\right) && \textrm{Triangular.}
1212
\end{aligned}
1313
$$
1414

@@ -77,25 +77,25 @@ def constant(x):
7777
return 1.0 + 0 * x
7878
7979
if tab.selected('pytorch'):
80-
def epanechikov(x):
80+
def triangular(x):
8181
return torch.max(1 - d2l.abs(x), torch.zeros_like(x))
8282
if tab.selected('mxnet'):
83-
def epanechikov(x):
83+
def triangular(x):
8484
return np.maximum(1 - d2l.abs(x), 0)
8585
if tab.selected('tensorflow'):
86-
def epanechikov(x):
86+
def triangular(x):
8787
return tf.maximum(1 - d2l.abs(x), 0)
8888
if tab.selected('jax'):
89-
def epanechikov(x):
89+
def triangular(x):
9090
return jnp.maximum(1 - d2l.abs(x), 0)
9191
```
9292

9393
```{.python .input}
9494
%%tab all
9595
fig, axes = d2l.plt.subplots(1, 4, sharey=True, figsize=(12, 3))
9696
97-
kernels = (gaussian, boxcar, constant, epanechikov)
98-
names = ('Gaussian', 'Boxcar', 'Constant', 'Epanechikov')
97+
kernels = (gaussian, boxcar, constant, triangular)
98+
names = ('Gaussian', 'Boxcar', 'Constant', 'Triangular')
9999
x = d2l.arange(-2.5, 2.5, 0.1)
100100
for kernel, name, ax in zip(kernels, names, axes):
101101
if tab.selected('pytorch', 'mxnet', 'tensorflow'):

0 commit comments

Comments
 (0)