-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_a2c_icm.py
393 lines (320 loc) · 12.6 KB
/
run_a2c_icm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
import logging
import numpy as np
import torch.nn.functional as F
import torch.nn as nn
import torch
import time
import datetime
from ninja_gaiden import NesGymProc
from ninja_gaiden.ninja_env import _make_ninja_gaiden_gym
from torch.multiprocessing import Pipe
from tensorboardX import SummaryWriter
from dqn.model import DeepCnnActorCriticNetwork, CnnActorCriticNetwork, CuriosityModel, Categorical
import torch.optim as optim
from collections import deque
class ActorAgent(object):
def __init__(
self,
input_size,
output_size,
num_env,
num_step,
gamma,
lam=0.95,
use_gae=True,
use_cuda=False,
use_noisy_net=True):
self.model = CnnActorCriticNetwork(
input_size, output_size, use_noisy_net)
if use_icm:
self.icm = CuriosityModel(input_size, output_size)
self.num_env = num_env
self.output_size = output_size
self.input_size = input_size
self.num_step = num_step
self.gamma = gamma
self.lam = lam
self.use_gae = use_gae
if use_icm:
self.optimizer = optim.Adam(
list(
self.model.parameters()) +
list(
self.icm.parameters()),
lr=learning_rate)
else:
self.optimizer = optim.Adam(
self.model.parameters(), lr=learning_rate)
self.device = torch.device('cuda' if use_cuda else 'cpu')
self.model = self.model.to(self.device)
if use_icm:
self.icm = self.icm.to(self.device)
def get_action(self, state):
state = torch.Tensor(state).to(self.device)
state = state.float()
policy, value = self.model(state)
policy = F.softmax(policy, dim=-1).data.cpu().numpy()
action = self.random_choice_prob_index(policy)
return action
def compute_intrinsic_reward(self, state, next_state, action):
state = torch.FloatTensor(state).to(self.device)
next_state = torch.FloatTensor(next_state).to(self.device)
action = torch.LongTensor(action).to(self.device)
action_onehot = torch.FloatTensor(
len(action), self.output_size).to(
self.device)
action_onehot.zero_()
action_onehot.scatter_(1, action.view(len(action), -1), 1)
real_next_state_feature, pred_next_state_feature, pred_action = self.icm(
[state, next_state, action_onehot])
intrinsic_reward = eta * \
((real_next_state_feature - pred_next_state_feature).pow(2)).sum(1) / 2.
return intrinsic_reward.data.cpu().numpy()
@staticmethod
def random_choice_prob_index(p, axis=1):
r = np.expand_dims(np.random.rand(p.shape[1 - axis]), axis=axis)
return (p.cumsum(axis=axis) > r).argmax(axis=axis)
def forward_transition(self, state, next_state):
state = torch.from_numpy(state).to(self.device)
state = state.float()
policy, value = self.model(state)
next_state = torch.from_numpy(next_state).to(self.device)
next_state = next_state.float()
_, next_value = self.model(next_state)
value = value.data.cpu().numpy().squeeze()
next_value = next_value.data.cpu().numpy().squeeze()
return value, next_value, policy
def train_model(
self,
s_batch,
next_s_batch,
target_batch,
y_batch,
adv_batch):
with torch.no_grad():
s_batch = torch.FloatTensor(s_batch).to(self.device)
next_s_batch = torch.FloatTensor(next_s_batch).to(self.device)
target_batch = torch.FloatTensor(target_batch).to(self.device)
y_batch = torch.LongTensor(y_batch).to(self.device)
adv_batch = torch.FloatTensor(adv_batch).to(self.device)
if use_standardization:
adv_batch = (adv_batch - adv_batch.mean()) / \
(adv_batch.std() + stable_eps)
ce = nn.CrossEntropyLoss()
# mse = nn.SmoothL1Loss()
forward_mse = nn.MSELoss()
# --------------------------------------------------------------------------------
if use_icm:
# for Curiosity-driven
action_onehot = torch.FloatTensor(
len(s_batch), self.output_size).to(
self.device)
action_onehot.zero_()
action_onehot.scatter_(1, y_batch.view(len(y_batch), -1), 1)
real_next_state_feature, pred_next_state_feature, pred_action = self.icm(
[s_batch, next_s_batch, action_onehot])
inverse_loss = ce(pred_action, y_batch)
forward_loss = forward_mse(
real_next_state_feature,
pred_next_state_feature)
# --------------------------------------------------------------------------------
# for multiply advantage
policy, value = self.model(s_batch)
m = Categorical(F.softmax(policy, dim=-1))
# Actor loss
actor_loss = -m.log_prob(y_batch) * adv_batch
# Entropy(for more exploration)
entropy = m.entropy()
# Critic loss
mse = nn.MSELoss()
critic_loss = mse(value.sum(1), target_batch)
self.optimizer.zero_grad()
# Total loss
if use_icm:
loss = lamb * (actor_loss.mean() + 0.5 * critic_loss) + \
(1 - beta) * inverse_loss + beta * forward_loss
else:
loss = actor_loss.mean() + 0.5 * critic_loss - entropy_coef * entropy.mean()
loss.backward()
torch.nn.utils.clip_grad_norm_(self.model.parameters(), clip_grad_norm)
self.optimizer.step()
def make_train_data(reward, done, value, next_value):
discounted_return = np.empty([num_step])
# Discounted Return
if use_gae:
gae = 0
for t in range(num_step - 1, -1, -1):
delta = reward[t] + gamma * \
next_value[t] * (1 - done[t]) - value[t]
gae = delta + gamma * lam * (1 - done[t]) * gae
discounted_return[t] = gae + value[t]
# For Actor
adv = discounted_return - value
else:
running_add = next_value[-1]
for t in range(num_step - 1, -1, -1):
running_add = reward[t] + gamma * running_add * (1 - done[t])
discounted_return[t] = running_add
# For Actor
adv = discounted_return - value
return discounted_return, adv
if __name__ == '__main__':
# Create dummpy env to see input size etc.
env = _make_ninja_gaiden_gym()
input_size = env.observation_space.shape
output_size = env.action_space.n
logging.info('input size: {}, output size: {}'
.format(input_size, output_size))
env.close()
writer = SummaryWriter()
use_cuda = False
use_gae = True
life_done = True
is_load_model = False
is_training = True
is_render = True
use_standardization = True
use_noisy_net = True
use_icm = False
model_path = 'data/{}_{}-a2c.model'.format(
'ninja-gaiden-v0',
datetime.date.today().isoformat())
load_model_path = 'data/ninja-gaiden-v0_2019-01-03-a2c.model'
lam = 0.95
num_worker = 8
num_step = 5
max_step = 1.15e8
if use_icm:
learning_rate = 0.001
else:
learning_rate = 0.00025
lr_schedule = False
stable_eps = 1e-30
entropy_coef = 0.02
alpha = 0.99
gamma = 0.99
clip_grad_norm = 0.5
# Curiosity param
lamb = 0.1
beta = 0.2
eta = 0.01
agent = ActorAgent(
input_size,
output_size,
num_worker,
num_step,
gamma,
use_cuda=use_cuda,
use_noisy_net=use_noisy_net)
if is_load_model:
if use_cuda:
agent.model.load_state_dict(torch.load(load_model_path))
else:
agent.model.load_state_dict(
torch.load(
load_model_path,
map_location='cpu'))
if not is_training:
agent.model.eval()
works = []
parent_conns = []
child_conns = []
for idx in range(num_worker):
parent_conn, child_conn = Pipe()
env = _make_ninja_gaiden_gym()
work = NesGymProc(env, is_render, idx, child_conn)
work.start()
works.append(work)
parent_conns.append(parent_conn)
child_conns.append(child_conn)
states = np.zeros([num_worker, 4, 84, 84])
sample_episode = 0
sample_rall = 0
sample_step = 0
sample_env_idx = 0
global_step = 0
recent_prob = deque(maxlen=10)
while True:
total_state, total_reward, total_done, total_next_state, total_action = [], [], [], [], []
global_step += (num_worker * num_step)
for _ in range(num_step):
if not is_training:
time.sleep(0.05)
actions = agent.get_action(states)
for parent_conn, action in zip(parent_conns, actions):
parent_conn.send(action)
next_states, rewards, dones, real_dones, log_rewards = [], [], [], [], []
for parent_conn in parent_conns:
s, r, d, rd, lr = parent_conn.recv()
next_states.append(s)
rewards.append(r)
dones.append(d)
real_dones.append(rd)
log_rewards.append(lr)
next_states = np.stack(next_states)
rewards = np.hstack(rewards)
dones = np.hstack(dones)
real_dones = np.hstack(real_dones)
if use_icm:
intrinsic_reward = agent.compute_intrinsic_reward(
states, next_states, actions)
rewards += intrinsic_reward
total_state.append(states)
total_next_state.append(next_states)
total_reward.append(rewards)
total_done.append(dones)
total_action.append(actions)
states = next_states[:, :, :, :]
sample_rall += log_rewards[sample_env_idx]
sample_step += 1
if real_dones[sample_env_idx]:
sample_episode += 1
writer.add_scalar('data/reward', sample_rall, sample_episode)
writer.add_scalar('data/step', sample_step, sample_episode)
sample_rall = 0
sample_step = 0
if is_training:
total_state = np.stack(total_state).transpose(
[1, 0, 2, 3, 4]).reshape([-1, 4, 84, 84])
total_next_state = np.stack(total_next_state).transpose(
[1, 0, 2, 3, 4]).reshape([-1, 4, 84, 84])
total_reward = np.stack(total_reward).transpose().reshape([-1])
total_action = np.stack(total_action).transpose().reshape([-1])
total_done = np.stack(total_done).transpose().reshape([-1])
value, next_value, policy = agent.forward_transition(
total_state, total_next_state)
# logging utput to see how convergent it is.
policy = policy.detach()
m = F.softmax(policy, dim=-1)
recent_prob.append(m.max(1)[0].mean().cpu().numpy())
writer.add_scalar(
'data/max_prob',
np.mean(recent_prob),
sample_episode)
total_target = []
total_adv = []
for idx in range(num_worker):
target, adv = make_train_data(total_reward[idx * num_step:(idx + 1) * num_step],
total_done[idx *
num_step:(idx + 1) * num_step],
value[idx *
num_step:(idx + 1) * num_step],
next_value[idx * num_step:(idx + 1) * num_step])
total_target.append(target)
total_adv.append(adv)
agent.train_model(
total_state,
total_next_state,
np.hstack(total_target),
total_action,
np.hstack(total_adv))
# adjust learning rate
if lr_schedule:
new_learing_rate = learning_rate - \
(global_step / max_step) * learning_rate
for param_group in agent.optimizer.param_groups:
param_group['lr'] = new_learing_rate
writer.add_scalar(
'data/lr', new_learing_rate, sample_episode)
if global_step % (num_worker * num_step * 100) == 0:
torch.save(agent.model.state_dict(), model_path)