-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathFFT.js
64 lines (56 loc) · 1.25 KB
/
FFT.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
/*
complex fast fourier transform and inverse from
http://rosettacode.org/wiki/Fast_Fourier_transform#C.2B.2B
*/
function icfft(amplitudes)
{
var N = amplitudes.length;
var iN = 1 / N;
//conjugate if imaginary part is not 0
for(var i = 0 ; i < N; ++i)
if(amplitudes[i] instanceof Complex)
amplitudes[i].im = -amplitudes[i].im;
//apply fourier transform
amplitudes = cfft(amplitudes)
for(var i = 0 ; i < N; ++i)
{
//conjugate again
amplitudes[i].im = -amplitudes[i].im;
//scale
amplitudes[i].re *= iN;
amplitudes[i].im *= iN;
}
return amplitudes;
}
function cfft(amplitudes)
{
var N = amplitudes.length;
if( N <= 1 )
return amplitudes;
var hN = N / 2;
var even = [];
var odd = [];
even.length = hN;
odd.length = hN;
for(var i = 0; i < hN; ++i)
{
even[i] = amplitudes[i*2];
odd[i] = amplitudes[i*2+1];
}
even = cfft(even);
odd = cfft(odd);
var a = -2*Math.PI;
for(var k = 0; k < hN; ++k)
{
if(!(even[k] instanceof Complex))
even[k] = new Complex(even[k], 0);
if(!(odd[k] instanceof Complex))
odd[k] = new Complex(odd[k], 0);
var p = k/N;
var t = new Complex(0, a * p);
t.cexp(t).mul(odd[k], t);
amplitudes[k] = even[k].add(t, odd[k]);
amplitudes[k + hN] = even[k].sub(t, even[k]);
}
return amplitudes;
}