-
-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy pathtest_merge.py
666 lines (541 loc) · 22.8 KB
/
test_merge.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
import warnings
import numpy as np
import pytest
from dask_expr import Merge, from_pandas, merge, repartition
from dask_expr._expr import Projection
from dask_expr._shuffle import Shuffle
from dask_expr.tests._util import _backend_library, assert_eq
# Set DataFrame backend for this module
pd = _backend_library()
@pytest.mark.parametrize("how", ["left", "right", "inner", "outer"])
@pytest.mark.parametrize("shuffle_method", ["tasks", "disk"])
def test_merge(how, shuffle_method):
# Make simple left & right dfs
pdf1 = pd.DataFrame({"x": range(20), "y": range(20)})
df1 = from_pandas(pdf1, 4)
pdf2 = pd.DataFrame({"x": range(0, 20, 2), "z": range(10)})
df2 = from_pandas(pdf2, 2)
# Partition-wise merge with map_partitions
df3 = df1.merge(df2, on="x", how=how, shuffle_method=shuffle_method)
# Check result with/without fusion
expect = pdf1.merge(pdf2, on="x", how=how)
assert_eq(df3, expect, check_index=False)
assert_eq(df3.optimize(), expect, check_index=False)
df3 = merge(df1, df2, on="x", how=how, shuffle_method=shuffle_method)
assert_eq(df3, expect, check_index=False)
assert_eq(df3.optimize(), expect, check_index=False)
@pytest.mark.parametrize("how", ["left", "right", "inner", "outer"])
@pytest.mark.parametrize("pass_name", [True, False])
@pytest.mark.parametrize("sort", [True, False])
@pytest.mark.parametrize("shuffle_method", ["tasks", "disk"])
def test_merge_indexed(how, pass_name, sort, shuffle_method):
# Make simple left & right dfs
pdf1 = pd.DataFrame({"x": range(20), "y": range(20)}).set_index("x")
df1 = from_pandas(pdf1, 4)
pdf2 = pd.DataFrame({"x": range(0, 20, 2), "z": range(10)}).set_index("x")
df2 = from_pandas(pdf2, 2, sort=sort)
if pass_name:
left_on = right_on = "x"
left_index = right_index = False
else:
left_on = right_on = None
left_index = right_index = True
df3 = df1.merge(
df2,
left_index=left_index,
left_on=left_on,
right_index=right_index,
right_on=right_on,
how=how,
shuffle_method=shuffle_method,
)
# Check result with/without fusion
expect = pdf1.merge(
pdf2,
left_index=left_index,
left_on=left_on,
right_index=right_index,
right_on=right_on,
how=how,
)
assert_eq(df3, expect)
assert_eq(df3.optimize(), expect)
@pytest.mark.parametrize("how", ["left", "right", "inner", "outer"])
@pytest.mark.parametrize("npartitions", [None, 22])
def test_broadcast_merge(how, npartitions):
# Make simple left & right dfs
pdf1 = pd.DataFrame({"x": range(40), "y": range(40)})
df1 = from_pandas(pdf1, 20)
pdf2 = pd.DataFrame({"x": range(0, 40, 2), "z": range(20)})
df2 = from_pandas(pdf2, 2)
df3 = df1.merge(
df2, on="x", how=how, npartitions=npartitions, shuffle_method="tasks"
)
if npartitions:
assert df3.npartitions == npartitions
# Check that we avoid the shuffle when allowed
if how in ("left", "inner"):
assert all(["Shuffle" not in str(op) for op in df3.simplify().operands[:2]])
# Check result with/without fusion
expect = pdf1.merge(pdf2, on="x", how=how)
# TODO: This is incorrect, but consistent with dask/dask
assert_eq(df3, expect, check_index=False, check_divisions=False)
assert_eq(df3.optimize(), expect, check_index=False, check_divisions=False)
def test_merge_column_projection():
# Make simple left & right dfs
pdf1 = pd.DataFrame({"x": range(20), "y": range(20), "z": range(20)})
df1 = from_pandas(pdf1, 4)
pdf2 = pd.DataFrame({"x": range(0, 20, 2), "z": range(10)})
df2 = from_pandas(pdf2, 2)
# Partition-wise merge with map_partitions
df3 = df1.merge(df2, on="x")["z_x"].simplify()
assert "y" not in df3.expr.operands[0].columns
@pytest.mark.parametrize("how", ["left", "right", "inner", "outer"])
@pytest.mark.parametrize("shuffle_method", ["tasks", "disk"])
def test_join(how, shuffle_method):
# Make simple left & right dfs
pdf1 = pd.DataFrame({"x": range(20), "y": range(20)})
df1 = from_pandas(pdf1, 4)
pdf2 = pd.DataFrame({"z": range(10)}, index=pd.Index(range(10), name="a"))
df2 = from_pandas(pdf2, 2)
# Partition-wise merge with map_partitions
df3 = df1.join(df2, on="x", how=how, shuffle_method=shuffle_method)
# Check result with/without fusion
expect = pdf1.join(pdf2, on="x", how=how)
assert_eq(df3.compute(), expect, check_index=False)
assert_eq(df3.optimize(), expect, check_index=False)
df3 = df1.join(df2.z, on="x", how=how, shuffle_method=shuffle_method)
assert_eq(df3, expect, check_index=False)
assert_eq(df3.optimize(), expect, check_index=False)
def test_join_recursive():
pdf = pd.DataFrame({"x": [1, 2, 3], "y": 1}, index=pd.Index([1, 2, 3], name="a"))
df = from_pandas(pdf, npartitions=2)
pdf2 = pd.DataFrame(
{"a": [1, 2, 3, 4, 5, 6], "b": 1}, index=pd.Index([1, 2, 3, 4, 5, 6], name="a")
)
df2 = from_pandas(pdf2, npartitions=2)
pdf3 = pd.DataFrame({"c": [1, 2, 3], "d": 1}, index=pd.Index([1, 2, 3], name="a"))
df3 = from_pandas(pdf3, npartitions=2)
result = df.join([df2, df3], how="outer")
assert_eq(result, pdf.join([pdf2, pdf3], how="outer"))
result = df.join([df2, df3], how="left")
# The nature of our join might cast ints to floats
assert_eq(result, pdf.join([pdf2, pdf3], how="left"), check_dtype=False)
def test_join_recursive_raises():
pdf = pd.DataFrame({"x": [1, 2, 3], "y": 1}, index=pd.Index([1, 2, 3], name="a"))
df = from_pandas(pdf, npartitions=2)
with pytest.raises(ValueError, match="other must be DataFrame"):
df.join(["dummy"])
with pytest.raises(ValueError, match="only supports left or outer"):
df.join([df], how="inner")
with pytest.raises(ValueError, match="only supports left or outer"):
df.join([df], how="right")
def test_singleton_divisions():
df = pd.DataFrame({"x": [1, 1, 1]}, index=[1, 2, 3])
ddf = from_pandas(df, npartitions=2)
ddf2 = ddf.set_index("x")
joined = ddf2.join(ddf2, rsuffix="r")
assert joined.divisions == (1, 1)
joined.compute()
def test_categorical_merge_does_not_increase_npartitions():
df1 = pd.DataFrame(data={"A": ["a", "b", "c"]}, index=["s", "v", "w"])
df2 = pd.DataFrame(data={"B": ["t", "d", "i"]}, index=["v", "w", "r"])
# We are npartitions=1 on both sides, so it should stay that way
ddf1 = from_pandas(df1, npartitions=1)
df2 = df2.astype({"B": "category"})
assert_eq(df1.join(df2), ddf1.join(df2))
def test_merge_len():
pdf = pd.DataFrame({"x": [1, 2, 3], "y": 1})
df = from_pandas(pdf, npartitions=2)
pdf2 = pd.DataFrame({"x": [1, 2, 3], "z": 1})
df2 = from_pandas(pdf2, npartitions=2)
assert_eq(len(df.merge(df2)), len(pdf.merge(pdf2)))
query = df.merge(df2).index.optimize(fuse=False)
expected = df[["x"]].merge(df2[["x"]]).index.optimize(fuse=False)
assert query._name == expected._name
def test_merge_optimize_subset_strings():
pdf = pd.DataFrame({"a": [1, 2], "aaa": 1})
pdf2 = pd.DataFrame({"b": [1, 2], "aaa": 1})
df = from_pandas(pdf)
df2 = from_pandas(pdf2)
query = df.merge(df2, on="aaa")[["aaa"]].optimize(fuse=False)
exp = df[["aaa"]].merge(df2[["aaa"]], on="aaa").optimize(fuse=False)
assert query._name == exp._name
assert_eq(query, pdf.merge(pdf2, on="aaa")[["aaa"]])
@pytest.mark.parametrize("npartitions_left, npartitions_right", [(2, 3), (1, 1)])
def test_merge_combine_similar(npartitions_left, npartitions_right):
pdf = pd.DataFrame(
{
"a": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10],
"b": 1,
"c": 1,
"d": 1,
"e": 1,
"f": 1,
}
)
pdf2 = pd.DataFrame({"a": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], "x": 1})
df = from_pandas(pdf, npartitions=npartitions_left)
df2 = from_pandas(pdf2, npartitions=npartitions_right)
query = df.merge(df2)
query["new"] = query.b + query.c
query = query.groupby(["a", "e", "x"]).new.sum()
assert (
len(query.optimize().__dask_graph__()) <= 25
) # 45 is the non-combined version
expected = pdf.merge(pdf2)
expected["new"] = expected.b + expected.c
expected = expected.groupby(["a", "e", "x"]).new.sum()
assert_eq(query, expected)
def test_merge_combine_similar_intermediate_projections():
pdf = pd.DataFrame(
{
"a": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10],
"b": 1,
"c": 1,
}
)
pdf2 = pd.DataFrame({"a": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], "x": 1})
pdf3 = pd.DataFrame({"d": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], "e": 1, "y": 1})
df = from_pandas(pdf, npartitions=2)
df2 = from_pandas(pdf2, npartitions=3)
df3 = from_pandas(pdf3, npartitions=3)
q = df.merge(df2).merge(df3, left_on="b", right_on="d")[["b", "x", "y"]]
q["new"] = q.b + q.x
result = q.optimize(fuse=False)
# Check that we have intermediate projections dropping unnecessary columns
assert isinstance(result.expr.frame, Projection)
assert isinstance(result.expr.frame.frame, Merge)
assert isinstance(result.expr.frame.frame.left, Projection)
assert isinstance(result.expr.frame.frame.left.frame, Shuffle)
pd_result = pdf.merge(pdf2).merge(pdf3, left_on="b", right_on="d")[["b", "x", "y"]]
pd_result["new"] = pd_result.b + pd_result.x
assert sorted(result.expr.frame.frame.left.operand("columns")) == ["b", "x"]
assert_eq(result, pd_result, check_index=False)
def test_categorical_merge_with_merge_column_cat_in_one_and_not_other_upcasts():
df1 = pd.DataFrame({"A": pd.Categorical([0, 1]), "B": pd.Categorical(["a", "b"])})
df2 = pd.DataFrame({"C": pd.Categorical(["a", "b"])})
expected = pd.merge(df2, df1, left_index=True, right_on="A")
ddf1 = from_pandas(df1, npartitions=2)
ddf2 = from_pandas(df2, npartitions=2)
actual = merge(ddf2, ddf1, left_index=True, right_on="A").compute()
assert actual.C.dtype == "category"
assert actual.B.dtype == "category"
assert actual.A.dtype == "int64"
assert actual.index.dtype == "int64"
assert assert_eq(expected, actual)
def test_merge_combine_similar_hangs():
var1 = 15
var2 = "BRASS"
var3 = "EUROPE"
region_ds = from_pandas(
pd.DataFrame.from_dict(
{
"r_regionkey": {0: 0, 1: 1},
"r_name": {0: "AFRICA", 1: "AMERICA"},
"r_comment": {0: "a", 1: "s "},
}
)
)
nation_filtered = from_pandas(
pd.DataFrame.from_dict(
{
"n_nationkey": {0: 0, 1: 1},
"n_name": {0: "ALGERIA", 1: "ARGENTINA"},
"n_regionkey": {0: 0, 1: 1},
"n_comment": {0: "fu", 1: "i"},
}
)
)
supplier_filtered = from_pandas(
pd.DataFrame.from_dict(
{
"s_suppkey": {0: 1, 1: 2},
"s_name": {0: "a#1", 1: "a#2"},
"s_address": {0: "sdrGnX", 1: "T"},
"s_nationkey": {0: 17, 1: 5},
"s_phone": {0: "27-918-335-1736", 1: "15-679-861-2259"},
"s_acctbal": {0: 5755, 1: 4032},
"s_comment": {0: " inst", 1: " th"},
}
)
)
part_filtered = from_pandas(
pd.DataFrame.from_dict(
{
"p_partkey": {0: 1, 1: 2},
"p_name": {0: "gol", 1: "bl"},
"p_mfgr": {0: "Manufacturer#1", 1: "Manufacturer#1"},
"p_brand": {0: "Brand#13", 1: "Brand#13"},
"p_type": {0: "PROM", 1: "LARG"},
"p_size": {0: 7, 1: 1},
"p_container": {0: "J", 1: "LG"},
"p_retailprice": {0: 901, 1: 902},
"p_comment": {0: "ir", 1: "ack"},
}
)
)
#
partsupp_filtered = from_pandas(
pd.DataFrame.from_dict(
{
"ps_partkey": {0: 1, 1: 1},
"ps_suppkey": {0: 2, 1: 2502},
"ps_availqty": {0: 3325, 1: 8076},
"ps_supplycost": {0: 771, 1: 993},
"ps_comment": {0: "bli", 1: "ts boo"},
}
)
)
region_filtered = region_ds[(region_ds["r_name"] == var3)]
r_n_merged = nation_filtered.merge(
region_filtered, left_on="n_regionkey", right_on="r_regionkey", how="inner"
)
s_r_n_merged = r_n_merged.merge(
supplier_filtered,
left_on="n_nationkey",
right_on="s_nationkey",
how="inner",
)
ps_s_r_n_merged = s_r_n_merged.merge(
partsupp_filtered, left_on="s_suppkey", right_on="ps_suppkey", how="inner"
)
part_filtered = part_filtered[
(part_filtered["p_size"] == var1)
& (part_filtered["p_type"].astype(str).str.endswith(var2))
]
merged_df = part_filtered.merge(
ps_s_r_n_merged, left_on="p_partkey", right_on="ps_partkey", how="inner"
)
min_values = merged_df.groupby("p_partkey")["ps_supplycost"].min().reset_index()
min_values.columns = ["P_PARTKEY_CPY", "MIN_SUPPLYCOST"]
merged_df = merged_df.merge(
min_values,
left_on=["p_partkey", "ps_supplycost"],
right_on=["P_PARTKEY_CPY", "MIN_SUPPLYCOST"],
how="inner",
)
out = merged_df[
[
"s_acctbal",
"s_name",
"n_name",
"p_partkey",
"p_mfgr",
"s_address",
"s_phone",
"s_comment",
]
]
expected = pd.DataFrame(
columns=[
"s_acctbal",
"s_name",
"n_name",
"p_partkey",
"p_mfgr",
"s_address",
"s_phone",
"s_comment",
]
)
assert_eq(out, expected, check_dtype=False)
# Double check that these don't hang
out.optimize(fuse=False)
out.optimize()
def test_recursive_join():
dfs_to_merge = []
for i in range(10):
df = pd.DataFrame(
{
f"{i}A": [5, 6, 7, 8],
f"{i}B": [4, 3, 2, 1],
},
index=pd.Index([0, 1, 2, 3], name="a"),
)
ddf = from_pandas(df, 2)
dfs_to_merge.append(ddf)
ddf_loop = from_pandas(pd.DataFrame(index=pd.Index([0, 1, 3], name="a")), 3)
for ddf in dfs_to_merge:
ddf_loop = ddf_loop.join(ddf, how="left")
ddf_pairwise = from_pandas(pd.DataFrame(index=pd.Index([0, 1, 3], name="a")), 3)
ddf_pairwise = ddf_pairwise.join(dfs_to_merge, how="left")
# TODO: divisions is None for recursive join for now
assert_eq(ddf_pairwise, ddf_loop, check_divisions=False)
def test_merge_repartition():
pdf = pd.DataFrame({"a": [1, 2, 3]})
pdf2 = pd.DataFrame({"b": [1, 2, 3]}, index=[1, 2, 3])
df = from_pandas(pdf, npartitions=2)
df2 = from_pandas(pdf2, npartitions=3)
assert_eq(df.join(df2), pdf.join(pdf2))
def test_merge_reparititon_divisions():
pdf = pd.DataFrame({"a": [1, 2, 3, 4, 5, 6]})
pdf2 = pd.DataFrame({"b": [1, 2, 3, 4, 5, 6]}, index=[1, 2, 3, 4, 5, 6])
pdf3 = pd.DataFrame({"c": [1, 2, 3, 4, 5, 6]}, index=[1, 2, 3, 4, 5, 6])
df = from_pandas(pdf, npartitions=2)
df2 = from_pandas(pdf2, npartitions=3)
df3 = from_pandas(pdf3, npartitions=3)
assert_eq(df.join(df2).join(df3), pdf.join(pdf2).join(pdf3))
def test_join_gives_proper_divisions():
df = pd.DataFrame({"a": ["a", "b", "c"]}, index=[0, 1, 2])
ddf = from_pandas(df, npartitions=1)
right_df = pd.DataFrame({"b": [1.0, 2.0, 3.0]}, index=["a", "b", "c"])
expected = df.join(right_df, how="inner", on="a")
actual = ddf.join(right_df, how="inner", on="a")
assert actual.divisions == ddf.divisions
assert_eq(expected, actual)
@pytest.mark.parametrize("shuffle_method", ["tasks", "disk"])
@pytest.mark.parametrize("how", ["inner", "left"])
def test_merge_known_to_single(how, shuffle_method):
partition_sizes = np.array([3, 4, 2, 5, 3, 2, 5, 9, 4, 7, 4])
idx = [i for i, s in enumerate(partition_sizes) for _ in range(s)]
k = [i for s in partition_sizes for i in range(s)]
vi = range(len(k))
pdf1 = pd.DataFrame(dict(idx=idx, k=k, v1=vi)).set_index(["idx"])
partition_sizes = np.array([4, 2, 5, 3, 2, 5, 9, 4, 7, 4, 8])
idx = [i for i, s in enumerate(partition_sizes) for _ in range(s)]
k = [i for s in partition_sizes for i in range(s)]
vi = range(len(k))
pdf2 = pd.DataFrame(dict(idx=idx, k=k, v1=vi)).set_index(["idx"])
df1 = repartition(pdf1, [0, 1, 3, 4, 5, 6, 7, 8, 9, 10, 11])
df2 = from_pandas(pdf2, npartitions=1, sort=False)
expected = pdf1.merge(pdf2, on="idx", how=how)
result = df1.merge(df2, on="idx", how=how, shuffle_method=shuffle_method)
assert_eq(result, expected)
assert result.divisions == df1.divisions
expected = pdf1.merge(pdf2, on="k", how=how)
result = df1.merge(df2, on="k", how=how, shuffle_method=shuffle_method)
assert_eq(result, expected, check_index=False)
assert all(d is None for d in result.divisions)
@pytest.mark.parametrize("how", ["right", "outer"])
def test_merge_empty_left_df(how):
left = pd.DataFrame({"a": [1, 1, 2, 2], "val": [5, 6, 7, 8]})
right = pd.DataFrame({"a": [0, 0, 3, 3], "val": [11, 12, 13, 14]})
dd_left = from_pandas(left, npartitions=4)
dd_right = from_pandas(right, npartitions=4)
merged = dd_left.merge(dd_right, on="a", how=how)
expected = left.merge(right, on="a", how=how)
assert_eq(merged, expected, check_index=False)
# Check that the individual partitions have the expected shape
merged.map_partitions(lambda x: x, meta=merged._meta).compute()
def test_merge_npartitions():
pdf = pd.DataFrame({"a": [1, 2, 3, 4, 5, 6]})
pdf2 = pd.DataFrame({"b": [1, 2, 3, 4, 5, 6]}, index=[1, 2, 3, 4, 5, 6])
df = from_pandas(pdf, npartitions=1)
df2 = from_pandas(pdf2, npartitions=3)
result = df.join(df2, npartitions=6)
# Ignore npartitions when broadcasting
assert result.npartitions == 4
assert_eq(result, pdf.join(pdf2))
df = from_pandas(pdf, npartitions=2)
result = df.join(df2, npartitions=6)
# Ignore npartitions for repartition-join
assert result.npartitions == 4
assert_eq(result, pdf.join(pdf2))
pdf = pd.DataFrame(
{"a": [1, 2, 3, 4, 5, 6]}, index=pd.Index([6, 5, 4, 3, 2, 1], name="a")
)
pdf2 = pd.DataFrame(
{"b": [1, 2, 3, 4, 5, 6]}, index=pd.Index([1, 2, 7, 4, 5, 6], name="a")
)
df = from_pandas(pdf, npartitions=2, sort=False)
df2 = from_pandas(pdf2, npartitions=3, sort=False)
result = df.join(df2, npartitions=6)
assert result.npartitions == 6
assert_eq(result, pdf.join(pdf2))
@pytest.mark.parametrize("how", ["inner", "outer", "left", "right"])
@pytest.mark.parametrize("on_index", [True, False])
def test_merge_columns_dtypes1(how, on_index):
# tests results of merges with merge columns having different dtypes;
# asserts that either the merge was successful or the corresponding warning is raised
# addresses issue #4574
df1 = pd.DataFrame(
{"A": list(np.arange(5).astype(float)) * 2, "B": list(np.arange(5)) * 2}
)
df2 = pd.DataFrame({"A": np.arange(5), "B": np.arange(5)})
a = from_pandas(df1, 2) # merge column "A" is float
b = from_pandas(df2, 2) # merge column "A" is int
on = ["A"]
left_index = right_index = on_index
if on_index:
a = a.set_index("A")
b = b.set_index("A")
on = None
with warnings.catch_warnings(record=True) as record:
warnings.simplefilter("always")
result = merge(
a, b, on=on, how=how, left_index=left_index, right_index=right_index
)
warned = any("merge column data type mismatches" in str(r) for r in record)
# result type depends on merge operation -> convert to pandas
result = result if isinstance(result, pd.DataFrame) else result.compute()
has_nans = result.isna().values.any()
assert (has_nans and warned) or not has_nans
def test_merge_pandas_object():
pdf1 = pd.DataFrame({"x": range(20), "y": range(20)})
df1 = from_pandas(pdf1, 4)
pdf2 = pd.DataFrame({"x": range(20), "z": range(20)})
assert_eq(merge(df1, pdf2, on="x"), pdf1.merge(pdf2, on="x"), check_index=False)
assert_eq(merge(pdf2, df1, on="x"), pdf2.merge(pdf1, on="x"), check_index=False)
pdf1 = pd.DataFrame({"x": range(20), "y": range(20)}).set_index("x")
df1 = from_pandas(pdf1, 4)
assert_eq(
merge(df1, pdf2, left_index=True, right_on="x"),
pdf1.merge(pdf2, left_index=True, right_on="x"),
check_index=False,
)
assert_eq(
merge(pdf2, df1, left_on="x", right_index=True),
pdf2.merge(pdf1, left_on="x", right_index=True),
check_index=False,
)
@pytest.mark.parametrize("clear_divisions", [True, False])
@pytest.mark.parametrize("how", ["left", "outer"])
@pytest.mark.parametrize("npartitions_base", [1, 2, 3])
@pytest.mark.parametrize("npartitions_other", [1, 2, 3])
def test_pairwise_merge_results_in_identical_output_df(
how, npartitions_base, npartitions_other, clear_divisions
):
if clear_divisions and (npartitions_other != 3 or npartitions_base != 1):
pytest.skip(reason="Runtime still slower than I would like, so save some time")
dfs_to_merge = []
for i in range(10):
df = pd.DataFrame(
{
f"{i}A": [5, 6, 7, 8],
f"{i}B": [4, 3, 2, 1],
},
index=[0, 1, 2, 3],
)
ddf = from_pandas(df, npartitions_other)
if clear_divisions:
ddf = ddf.clear_divisions()
dfs_to_merge.append(ddf)
ddf_loop = from_pandas(pd.DataFrame(index=[0, 1, 3]), npartitions_base)
if clear_divisions:
ddf_loop = ddf_loop.clear_divisions()
for ddf in dfs_to_merge:
ddf_loop = ddf_loop.join(ddf, how=how)
ddf_pairwise = from_pandas(pd.DataFrame(index=[0, 1, 3]), npartitions_base)
if clear_divisions:
ddf_pairwise = ddf_pairwise.clear_divisions()
ddf_pairwise = ddf_pairwise.join(dfs_to_merge, how=how)
# recursive join doesn't yet respect divisions in dask-expr
assert_eq(ddf_pairwise, ddf_loop)
def test_join_reorder():
pdf1 = pd.DataFrame({"x": range(100), "a": range(100)})
df1 = from_pandas(pdf1, 10)
pdf2 = pd.DataFrame({"x": range(50), "c": range(50)})
df2 = from_pandas(pdf2, 4)
pdf3 = pd.DataFrame({"x": range(40, 60), "b": range(20)})
df3 = from_pandas(pdf3, 2)
expected_pdf = pdf1.merge(pdf2).merge(pdf3)
expected_pdf2 = pdf3.merge(pdf2).merge(pdf1)
actual = df1.merge(df2).merge(df3)
expected = df3.merge(df2).merge(df1)
assert actual.simplify()._name == expected.simplify()._name
cols = expected_pdf.columns
assert_eq(expected_pdf2[cols], expected_pdf)
# FIXME: Col order is optimized away. Therefore compute and sort the columns
assert_eq(actual.compute()[cols], expected_pdf, check_index=False)
assert_eq(expected.compute()[cols], expected_pdf, check_index=False)