-
-
Notifications
You must be signed in to change notification settings - Fork 262
/
Copy pathtest_regression.py
134 lines (101 loc) · 4.13 KB
/
test_regression.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
import numbers
import dask.array as da
import numpy as np
import pytest
import sklearn.metrics
from dask.array.utils import assert_eq
import dask_ml.metrics
_METRICS_TO_TEST = [
"mean_squared_error",
"mean_squared_log_error",
"mean_absolute_error",
"r2_score",
]
# mean_absolute_percentage_error() was added in scikit-learn 0.24.0
_METRICS_TO_TEST.append("mean_absolute_percentage_error")
@pytest.fixture(params=_METRICS_TO_TEST)
def metric_pairs(request):
"""Pairs of (dask-ml, sklearn) regression metrics.
* mean_squared_error
* mean_absolute_error
* mean_absolute_percentage_error (if scikit-learn >= 0.24.0)
* r2_score
"""
return (
getattr(dask_ml.metrics, request.param),
getattr(sklearn.metrics, request.param),
)
@pytest.mark.parametrize("compute", [True, False])
def test_ok(metric_pairs, compute):
m1, m2 = metric_pairs
a = da.random.uniform(size=(100,), chunks=(25,))
b = da.random.uniform(size=(100,), chunks=(25,))
result = m1(a, b, compute=compute)
if compute:
assert isinstance(result, numbers.Real)
else:
assert isinstance(result, da.Array)
expected = m2(a, b)
assert abs(result - expected) < 1e-5
@pytest.mark.skip(reason="FutureWarning: 'squared' is deprecated")
@pytest.mark.parametrize("squared", [True, False])
def test_mse_squared(squared):
m1 = dask_ml.metrics.mean_squared_error
m2 = sklearn.metrics.mean_squared_error
a = da.random.uniform(size=(100,), chunks=(25,))
b = da.random.uniform(size=(100,), chunks=(25,))
result = m1(a, b, squared=squared)
expected = m2(a, b, squared=squared)
assert abs(result - expected) < 1e-5
@pytest.mark.skip(
reason="InvalidParameterError: The 'multioutput' parameter of mean_squared_error "
+ "must be a string among..."
)
@pytest.mark.parametrize("multioutput", ["uniform_average", None])
def test_regression_metrics_unweighted_average_multioutput(metric_pairs, multioutput):
m1, m2 = metric_pairs
a = da.random.uniform(size=(100,), chunks=(25,))
b = da.random.uniform(size=(100,), chunks=(25,))
result = m1(a, b, multioutput=multioutput)
expected = m2(a, b, multioutput=multioutput)
assert abs(result - expected) < 1e-5
@pytest.mark.parametrize("compute", [True, False])
def test_regression_metrics_raw_values(metric_pairs, compute):
m1, m2 = metric_pairs
if m1.__name__ == "r2_score":
pytest.skip("r2_score does not support multioutput='raw_values'")
a = da.random.uniform(size=(100, 3), chunks=(25, 3))
b = da.random.uniform(size=(100, 3), chunks=(25, 3))
result = m1(a, b, multioutput="raw_values", compute=compute)
expected = m2(a, b, multioutput="raw_values")
if compute:
assert isinstance(result, np.ndarray)
else:
assert isinstance(result, da.Array)
assert_eq(result, expected)
assert result.shape == (3,)
def test_regression_metrics_do_not_support_weighted_multioutput(metric_pairs):
m1, _ = metric_pairs
a = da.random.uniform(size=(100, 3), chunks=(25, 3))
b = da.random.uniform(size=(100, 3), chunks=(25, 3))
weights = da.random.uniform(size=(3,))
if m1.__name__ == "r2_score":
error_msg = "'multioutput' must be 'uniform_average'"
else:
error_msg = "Weighted 'multioutput' not supported."
with pytest.raises((NotImplementedError, ValueError), match=error_msg):
_ = m1(a, b, multioutput=weights)
def test_r2_score_with_different_chunk_patterns():
"""Test r2_score with different chunking configurations."""
# Create arrays with compatible but different chunk patterns
a = da.random.uniform(size=(100,), chunks=25) # 4 chunks
b = da.random.uniform(size=(100,), chunks=20) # 5 chunks
result = dask_ml.metrics.r2_score(a, b)
assert isinstance(result, float)
# Create arrays with different chunk patterns
a_multi = da.random.uniform(size=(100, 3), chunks=(25, 3)) # 4 chunks
b_multi = da.random.uniform(size=(100, 3), chunks=(20, 3)) # 5 chunks
result_multi = dask_ml.metrics.r2_score(
a_multi, b_multi, multioutput="uniform_average"
)
assert isinstance(result_multi, float)