|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "metadata": {}, |
| 6 | + "source": [ |
| 7 | + "# Blob Detection Workflow\n", |
| 8 | + "\n", |
| 9 | + "This example shows a compact image-analysis pipeline that detects bright blobs in two sample images using DataJoint. It demonstrates:\n", |
| 10 | + "\n", |
| 11 | + "- Seeding a small `Image` manual table with two entries of standard images from `skimage.data`.\n", |
| 12 | + "- Defining multiple parameter sets for blob detection in a lookup table `BlobParamSet`\n", |
| 13 | + "- Defining a computed master table `Detection` together with its nested part table `Detection.Blob`.\n", |
| 14 | + "- Populating the master, which automatically inserts all part rows inside the same transaction.\n", |
| 15 | + "- Visualizing the results by drawing detection circles on the images.\n", |
| 16 | + "- Visually selecting the optimal parameter set for each image and saving the selection in a manual table `SelectDetection`.\n", |
| 17 | + "\n", |
| 18 | + "Along the way we illustrate why master-part relationships are ideal for computational workflows: the master stores aggregate results and the parts hold per-feature detail, all created atomically.\n" |
| 19 | + ] |
| 20 | + }, |
| 21 | + { |
| 22 | + "cell_type": "markdown", |
| 23 | + "metadata": {}, |
| 24 | + "source": [ |
| 25 | + "## Setup\n", |
| 26 | + "\n", |
| 27 | + "Load the required images and display them for reference.\n" |
| 28 | + ] |
| 29 | + }, |
| 30 | + { |
| 31 | + "cell_type": "code", |
| 32 | + "execution_count": null, |
| 33 | + "metadata": {}, |
| 34 | + "outputs": [], |
| 35 | + "source": [ |
| 36 | + "%xmode minimal" |
| 37 | + ] |
| 38 | + }, |
| 39 | + { |
| 40 | + "cell_type": "code", |
| 41 | + "execution_count": null, |
| 42 | + "metadata": {}, |
| 43 | + "outputs": [], |
| 44 | + "source": [ |
| 45 | + "%matplotlib inline\n", |
| 46 | + "import matplotlib.pyplot as plt\n", |
| 47 | + "from skimage import data\n", |
| 48 | + "from skimage.feature import blob_doh\n", |
| 49 | + "from skimage.color import rgb2gray\n" |
| 50 | + ] |
| 51 | + }, |
| 52 | + { |
| 53 | + "cell_type": "code", |
| 54 | + "execution_count": null, |
| 55 | + "metadata": {}, |
| 56 | + "outputs": [], |
| 57 | + "source": [ |
| 58 | + "import datajoint as dj\n", |
| 59 | + "\n", |
| 60 | + "schema = dj.Schema(db_prefix + 'blob_detection')" |
| 61 | + ] |
| 62 | + }, |
| 63 | + { |
| 64 | + "cell_type": "code", |
| 65 | + "execution_count": null, |
| 66 | + "metadata": {}, |
| 67 | + "outputs": [], |
| 68 | + "source": [ |
| 69 | + "@schema\n", |
| 70 | + "class Image(dj.Manual):\n", |
| 71 | + " definition = \"\"\"\n", |
| 72 | + " image_id : int\n", |
| 73 | + " ---\n", |
| 74 | + " image_name : varchar(30)\n", |
| 75 | + " image : longblob\n", |
| 76 | + " \"\"\"\n", |
| 77 | + "\n", |
| 78 | + "Image.insert(\n", |
| 79 | + " (\n", |
| 80 | + " (1, \"hubble deep field\", rgb2gray(data.hubble_deep_field())),\n", |
| 81 | + " (2, \"human mitosis\", data.human_mitosis()/255.0)\n", |
| 82 | + " ), skip_duplicates=True\n", |
| 83 | + ");" |
| 84 | + ] |
| 85 | + }, |
| 86 | + { |
| 87 | + "cell_type": "code", |
| 88 | + "execution_count": null, |
| 89 | + "metadata": {}, |
| 90 | + "outputs": [], |
| 91 | + "source": [ |
| 92 | + "fig, axs = plt.subplots(1, 2, figsize=(10, 5))\n", |
| 93 | + "for ax, image, title in zip(axs, *Image.fetch(\"image\", \"image_name\")):\n", |
| 94 | + " ax.imshow(image, cmap=\"gray_r\")\n", |
| 95 | + " ax.axis('off')\n", |
| 96 | + " ax.axis('equal')\n", |
| 97 | + " ax.set_title(title)\n" |
| 98 | + ] |
| 99 | + }, |
| 100 | + { |
| 101 | + "cell_type": "code", |
| 102 | + "execution_count": null, |
| 103 | + "metadata": {}, |
| 104 | + "outputs": [], |
| 105 | + "source": [ |
| 106 | + "@schema\n", |
| 107 | + "class BlobParamSet(dj.Lookup):\n", |
| 108 | + " definition = \"\"\"\n", |
| 109 | + " blob_paramset : int\n", |
| 110 | + " ---\n", |
| 111 | + " min_sigma : float\n", |
| 112 | + " max_sigma : float\n", |
| 113 | + " threshold : float\n", |
| 114 | + " \"\"\"\n", |
| 115 | + " contents = [\n", |
| 116 | + " (1, 2.0, 6.0, 0.001),\n", |
| 117 | + " (2, 3.0, 8.0, 0.002),\n", |
| 118 | + " (3, 4.0, 20.0, 0.01),\n", |
| 119 | + " ]\n", |
| 120 | + "\n", |
| 121 | + "\n", |
| 122 | + "@schema\n", |
| 123 | + "class Detection(dj.Computed):\n", |
| 124 | + " definition = \"\"\"\n", |
| 125 | + " -> Image\n", |
| 126 | + " -> BlobParamSet\n", |
| 127 | + " ---\n", |
| 128 | + " nblobs : int\n", |
| 129 | + " \"\"\"\n", |
| 130 | + "\n", |
| 131 | + " class Blob(dj.Part):\n", |
| 132 | + " definition = \"\"\"\n", |
| 133 | + " -> master\n", |
| 134 | + " blob_id : int\n", |
| 135 | + " ---\n", |
| 136 | + " x : float\n", |
| 137 | + " y : float\n", |
| 138 | + " r : float\n", |
| 139 | + " \"\"\"\n", |
| 140 | + "\n", |
| 141 | + " def make(self, key):\n", |
| 142 | + " # fetch inputs\n", |
| 143 | + " img = (Image & key).fetch1(\"image\")\n", |
| 144 | + " params = (BlobParamSet & key).fetch1()\n", |
| 145 | + "\n", |
| 146 | + " # compute results\n", |
| 147 | + " blobs = blob_doh(\n", |
| 148 | + " img, \n", |
| 149 | + " min_sigma=params['min_sigma'], \n", |
| 150 | + " max_sigma=params['max_sigma'], \n", |
| 151 | + " threshold=params['threshold'])\n", |
| 152 | + "\n", |
| 153 | + " # insert master and parts\n", |
| 154 | + " self.insert1(dict(key, nblobs=len(blobs)))\n", |
| 155 | + " self.Blob.insert(\n", |
| 156 | + " (dict(key, blob_id=i, x=x, y=y, r=r)\n", |
| 157 | + " for i, (x, y, r) in enumerate(blobs)))" |
| 158 | + ] |
| 159 | + }, |
| 160 | + { |
| 161 | + "cell_type": "code", |
| 162 | + "execution_count": null, |
| 163 | + "metadata": {}, |
| 164 | + "outputs": [], |
| 165 | + "source": [ |
| 166 | + "dj.Diagram(schema)" |
| 167 | + ] |
| 168 | + }, |
| 169 | + { |
| 170 | + "cell_type": "code", |
| 171 | + "execution_count": null, |
| 172 | + "metadata": {}, |
| 173 | + "outputs": [], |
| 174 | + "source": [ |
| 175 | + "Detection.populate(display_progress=True)" |
| 176 | + ] |
| 177 | + }, |
| 178 | + { |
| 179 | + "cell_type": "code", |
| 180 | + "execution_count": null, |
| 181 | + "metadata": {}, |
| 182 | + "outputs": [], |
| 183 | + "source": [ |
| 184 | + "Detection()" |
| 185 | + ] |
| 186 | + }, |
| 187 | + { |
| 188 | + "cell_type": "markdown", |
| 189 | + "metadata": {}, |
| 190 | + "source": [ |
| 191 | + "## Parameter sets\n", |
| 192 | + "\n", |
| 193 | + "Define a small lookup table of blob-detection parameters.\n" |
| 194 | + ] |
| 195 | + }, |
| 196 | + { |
| 197 | + "cell_type": "code", |
| 198 | + "execution_count": null, |
| 199 | + "metadata": {}, |
| 200 | + "outputs": [], |
| 201 | + "source": [ |
| 202 | + "fix, axes = plt.subplots(2, 3, figsize=(10, 6))\n", |
| 203 | + "for ax, key in zip(axes.ravel(), Detection.fetch(\"KEY\", order_by=\"image_id, blob_paramset\")):\n", |
| 204 | + " img = (Image & key).fetch1(\"image\")\n", |
| 205 | + " ax.imshow(img, cmap=\"gray_r\")\n", |
| 206 | + " ax.axis('off')\n", |
| 207 | + " ax.axis('equal')\n", |
| 208 | + " ax.set_title(str(key), fontsize=10)\n", |
| 209 | + " for x, y, r in zip(*(Detection.Blob & key).fetch(\"y\", \"x\", \"r\")):\n", |
| 210 | + " c = plt.Circle((x, y), r*1.2, color='r', alpha=0.5, fill=False)\n", |
| 211 | + " ax.add_patch(c)\n", |
| 212 | + "plt.suptitle(\"Detected blobs - all paramsets\")\n", |
| 213 | + "plt.tight_layout()" |
| 214 | + ] |
| 215 | + }, |
| 216 | + { |
| 217 | + "cell_type": "code", |
| 218 | + "execution_count": null, |
| 219 | + "metadata": {}, |
| 220 | + "outputs": [], |
| 221 | + "source": [ |
| 222 | + "@schema\n", |
| 223 | + "class SelectDetection(dj.Manual):\n", |
| 224 | + " definition = \"\"\"\n", |
| 225 | + " -> Image\n", |
| 226 | + " ---\n", |
| 227 | + " -> Detection\n", |
| 228 | + " \"\"\"\n", |
| 229 | + " " |
| 230 | + ] |
| 231 | + }, |
| 232 | + { |
| 233 | + "cell_type": "code", |
| 234 | + "execution_count": null, |
| 235 | + "metadata": {}, |
| 236 | + "outputs": [], |
| 237 | + "source": [ |
| 238 | + "SelectDetection.insert1(dict(image_id=1, blob_paramset=3))\n", |
| 239 | + "SelectDetection.insert1(dict(image_id=2, blob_paramset=1))" |
| 240 | + ] |
| 241 | + }, |
| 242 | + { |
| 243 | + "cell_type": "code", |
| 244 | + "execution_count": null, |
| 245 | + "metadata": {}, |
| 246 | + "outputs": [], |
| 247 | + "source": [ |
| 248 | + "dj.Diagram(schema)" |
| 249 | + ] |
| 250 | + }, |
| 251 | + { |
| 252 | + "cell_type": "code", |
| 253 | + "execution_count": null, |
| 254 | + "metadata": {}, |
| 255 | + "outputs": [], |
| 256 | + "source": [ |
| 257 | + "fix, axes = plt.subplots(1, 2, figsize=(8, 4))\n", |
| 258 | + "for ax, key in zip(axes.ravel(), SelectDetection.fetch(as_dict=True, order_by=\"image_id\")):\n", |
| 259 | + " img = (Image & key).fetch1(\"image\")\n", |
| 260 | + " ax.imshow(img, cmap=\"gray_r\")\n", |
| 261 | + " ax.axis('off')\n", |
| 262 | + " ax.axis('equal')\n", |
| 263 | + " ax.set_title(str(key), fontsize=10)\n", |
| 264 | + " for x, y, r in zip(*(Detection.Blob & key).fetch(\"y\", \"x\", \"r\")):\n", |
| 265 | + " c = plt.Circle((x, y), r*1.2, color='r', alpha=0.5, fill=False)\n", |
| 266 | + " ax.add_patch(c)\n", |
| 267 | + "plt.suptitle(\"Selected detections\", fontsize=16)\n", |
| 268 | + "plt.tight_layout()\n" |
| 269 | + ] |
| 270 | + }, |
| 271 | + { |
| 272 | + "cell_type": "markdown", |
| 273 | + "metadata": {}, |
| 274 | + "source": [ |
| 275 | + "## Detection master and part tables\n", |
| 276 | + "\n", |
| 277 | + "`Detection` is a computed table. When `populate()` runs, its `make()` method:\n", |
| 278 | + "\n", |
| 279 | + "1. Fetches the image and parameter set.\n", |
| 280 | + "2. Runs `skimage.feature.blob_doh` to compute blobs.\n", |
| 281 | + "3. Inserts one master row with the blob count.\n", |
| 282 | + "4. Inserts one `Detection.Blob` part row per blob (containing coordinates and radius).\n", |
| 283 | + "\n", |
| 284 | + "If any insert fails, the transaction is rolled back so master and parts stay synchronized.\n" |
| 285 | + ] |
| 286 | + }, |
| 287 | + { |
| 288 | + "cell_type": "markdown", |
| 289 | + "metadata": {}, |
| 290 | + "source": [ |
| 291 | + "## Results\n", |
| 292 | + "\n", |
| 293 | + "Populate the detection table and display both the master summary and the per-blob annotations.\n" |
| 294 | + ] |
| 295 | + }, |
| 296 | + { |
| 297 | + "cell_type": "markdown", |
| 298 | + "metadata": {}, |
| 299 | + "source": [ |
| 300 | + "## Takeaways\n", |
| 301 | + "\n", |
| 302 | + "- Master-part tables capture the structure “one job → many detailed results”.\n", |
| 303 | + "- Downstream analyses depend only on the master (`-> Detection`) yet can access part details when needed.\n", |
| 304 | + "- Populating the master guarantees atomic creation of all associated parts, preserving workflow integrity.\n" |
| 305 | + ] |
| 306 | + }, |
| 307 | + { |
| 308 | + "cell_type": "code", |
| 309 | + "execution_count": null, |
| 310 | + "metadata": {}, |
| 311 | + "outputs": [], |
| 312 | + "source": [ |
| 313 | + "schema.drop() # drop the schema for re-generating the tutorial from scratch." |
| 314 | + ] |
| 315 | + }, |
| 316 | + { |
| 317 | + "cell_type": "code", |
| 318 | + "execution_count": null, |
| 319 | + "metadata": {}, |
| 320 | + "outputs": [], |
| 321 | + "source": [] |
| 322 | + } |
| 323 | + ], |
| 324 | + "metadata": { |
| 325 | + "kernelspec": { |
| 326 | + "display_name": "base", |
| 327 | + "language": "python", |
| 328 | + "name": "python3" |
| 329 | + }, |
| 330 | + "language_info": { |
| 331 | + "codemirror_mode": { |
| 332 | + "name": "ipython", |
| 333 | + "version": 3 |
| 334 | + }, |
| 335 | + "file_extension": ".py", |
| 336 | + "mimetype": "text/x-python", |
| 337 | + "name": "python", |
| 338 | + "nbconvert_exporter": "python", |
| 339 | + "pygments_lexer": "ipython3", |
| 340 | + "version": "3.13.2" |
| 341 | + } |
| 342 | + }, |
| 343 | + "nbformat": 4, |
| 344 | + "nbformat_minor": 2 |
| 345 | +} |
0 commit comments