Skip to content

Commit 47b4a30

Browse files
committed
edit paths in _sidebar.md.
1 parent ff2e6d6 commit 47b4a30

File tree

1 file changed

+64
-64
lines changed

1 file changed

+64
-64
lines changed

docs/_sidebar.md

Lines changed: 64 additions & 64 deletions
Original file line numberDiff line numberDiff line change
@@ -3,89 +3,89 @@
33
- 目录
44
- 第一章 推荐系统概述
55
- [1.1 推荐系统的意义](/ch01/ch1.1)
6-
- [1.2 推荐系统架构](ch01/ch1.2)
7-
- [1.3 推荐系统技术栈](ch01/ch1.3)
6+
- [1.2 推荐系统架构](/ch01/ch1.2)
7+
- [1.3 推荐系统技术栈](/ch01/ch1.3)
88
- 第二章 推荐系统算法基础
99
- 2.1 经典召回模型
1010
- 2.1.1 基于协同过滤的召回
11-
- [UserCF](ch02/ch2.1/ch2.1.1/usercf)
12-
- [ItemCF](ch02/ch2.1/ch2.1.1/itemcf)
13-
- [Swing](ch02/ch2.1/ch2.1.1/Swing)
14-
- [矩阵分解](ch02/ch2.1/ch2.1.1/mf)
11+
- [UserCF](/ch02/ch2.1/ch2.1.1/usercf)
12+
- [ItemCF](/ch02/ch2.1/ch2.1.1/itemcf)
13+
- [Swing](/ch02/ch2.1/ch2.1.1/Swing)
14+
- [矩阵分解](/ch02/ch2.1/ch2.1.1/mf)
1515
- 2.1.2 基于向量的召回
16-
- [FM召回](ch02/ch2.1/ch2.1.2/FM)
16+
- [FM召回](/ch02/ch2.1/ch2.1.2/FM)
1717
- item2vec召回系列
18-
- [word2vec原理](ch02/ch2.1/ch2.1.2/word2vec)
19-
- [item2vec召回](ch02/ch2.1/ch2.1.2/item2vec)
20-
- [Airbnb召回](ch02/ch2.1/ch2.1.2/Airbnb)
21-
- [YoutubeDNN召回](ch02/ch2.1/ch2.1.2/YoutubeDNN)
18+
- [word2vec原理](/ch02/ch2.1/ch2.1.2/word2vec)
19+
- [item2vec召回](/ch02/ch2.1/ch2.1.2/item2vec)
20+
- [Airbnb召回](/ch02/ch2.1/ch2.1.2/Airbnb)
21+
- [YoutubeDNN召回](/ch02/ch2.1/ch2.1.2/YoutubeDNN)
2222
- 双塔召回
23-
- [经典双塔](ch02/ch2.1/ch2.1.2/DSSM)
24-
- [Youtube双塔](ch02/ch2.1/ch2.1.2/YoutubeTwoTower)
23+
- [经典双塔](/ch02/ch2.1/ch2.1.2/DSSM)
24+
- [Youtube双塔](/ch02/ch2.1/ch2.1.2/YoutubeTwoTower)
2525
- 2.1.3 基于图的召回
26-
- [EGES](ch02/ch2.1/ch2.1.3/EGES)
27-
- [PinSAGE](ch02/ch2.1/ch2.1.3/PinSage)
26+
- [EGES](/ch02/ch2.1/ch2.1.3/EGES)
27+
- [PinSAGE](/ch02/ch2.1/ch2.1.3/PinSage)
2828
- 2.1.4 基于序列的召回
29-
- [MIND](ch02/ch2.1/ch2.1.4/MIND)
30-
- [SDM](ch02/ch2.1/ch2.1.4/SDM)
29+
- [MIND](/ch02/ch2.1/ch2.1.4/MIND)
30+
- [SDM](/ch02/ch2.1/ch2.1.4/SDM)
3131
- 2.1.5 基于树模型的召回
32-
- [TDM](ch02/ch2.1/ch2.1.5/TDM)
32+
- [TDM](/ch02/ch2.1/ch2.1.5/TDM)
3333
- 2.2 经典排序模型
34-
- [2.2.1 GBDT+LR](ch02/ch2.2/ch2.2.1)
34+
- [2.2.1 GBDT+LR](/ch02/ch2.2/ch2.2.1)
3535
- 2.2.2 特征交叉
36-
- [FM](ch02/ch2.2/ch2.2.2/FM)
37-
- [PNN](ch02/ch2.2/ch2.2.2/PNN)
38-
- [DCN](ch02/ch2.2/ch2.2.2/DCN)
39-
- [AutoInt](ch02/ch2.2/ch2.2.2/AutoInt)
40-
- [FiBiNet](ch02/ch2.2/ch2.2.2/FiBiNet)
36+
- [FM](/ch02/ch2.2/ch2.2.2/FM)
37+
- [PNN](/ch02/ch2.2/ch2.2.2/PNN)
38+
- [DCN](/ch02/ch2.2/ch2.2.2/DCN)
39+
- [AutoInt](/ch02/ch2.2/ch2.2.2/AutoInt)
40+
- [FiBiNet](/ch02/ch2.2/ch2.2.2/FiBiNet)
4141
- 2.2.3 Wide&Deep系列
42-
- [Wide&Deep](ch02/ch2.2/ch2.2.3/WideNDeep)
43-
- [NFM](ch02/ch2.2/ch2.2.3/NFM)
44-
- [AFM](ch02/ch2.2/ch2.2.3/AFM)
45-
- [DeepFM](ch02/ch2.2/ch2.2.3/DeepFM)
46-
- [xDeepFM](ch02/ch2.2/ch2.2.3/xDeepFM)
42+
- [Wide&Deep](/ch02/ch2.2/ch2.2.3/WideNDeep)
43+
- [NFM](/ch02/ch2.2/ch2.2.3/NFM)
44+
- [AFM](/ch02/ch2.2/ch2.2.3/AFM)
45+
- [DeepFM](/ch02/ch2.2/ch2.2.3/DeepFM)
46+
- [xDeepFM](/ch02/ch2.2/ch2.2.3/xDeepFM)
4747
- 2.2.4 序列模型
48-
- [DIN](ch02/ch2.2/ch2.2.4/DIN)
49-
- [DIEN](ch02/ch2.2/ch2.2.4/DIEN)
50-
- [DSIN](ch02/ch2.2/ch2.2.4/DSIN)
48+
- [DIN](/ch02/ch2.2/ch2.2.4/DIN)
49+
- [DIEN](/ch02/ch2.2/ch2.2.4/DIEN)
50+
- [DSIN](/ch02/ch2.2/ch2.2.4/DSIN)
5151
- 2.2.5 多任务学习
52-
- [多任务学习概述](ch02/ch2.2/ch2.2.5/2.2.5.0)
53-
- [ESMM](ch02/ch2.2/ch2.2.5/ESMM)
54-
- [MMOE](ch02/ch2.2/ch2.2.5/MMOE)
55-
- [PLE](ch02/ch2.2/ch2.2.5/PLE)
52+
- [多任务学习概述](/ch02/ch2.2/ch2.2.5/2.2.5.0)
53+
- [ESMM](/ch02/ch2.2/ch2.2.5/ESMM)
54+
- [MMOE](/ch02/ch2.2/ch2.2.5/MMOE)
55+
- [PLE](/ch02/ch2.2/ch2.2.5/PLE)
5656
- 第三章 推荐系统实战
5757
- 3.1 天池入门赛-新闻推荐
58-
- [3.1.1 赛题理解&Baseline](ch03/ch3.1/markdown/ch3.1.1)
59-
- [3.1.2 数据分析](ch03/ch3.1/markdown/ch3.1.2)
60-
- [3.1.3 多路召回](ch03/ch3.1/markdown/ch3.1.3)
61-
- [3.1.4 特征工程](ch03/ch3.1/markdown/ch3.1.4)
62-
- [3.1.5 排序模型&模型融合](ch03/ch3.1/markdown/ch3.1.5)
58+
- [3.1.1 赛题理解&Baseline](/ch03/ch3.1/markdown/ch3.1.1)
59+
- [3.1.2 数据分析](/ch03/ch3.1/markdown/ch3.1.2)
60+
- [3.1.3 多路召回](/ch03/ch3.1/markdown/ch3.1.3)
61+
- [3.1.4 特征工程](/ch03/ch3.1/markdown/ch3.1.4)
62+
- [3.1.5 排序模型&模型融合](/ch03/ch3.1/markdown/ch3.1.5)
6363
- 3.2 新闻推荐系统的实践
64-
- [3.2.1 特别说明(必看)](ch03/ch3.2/3.2)
64+
- [3.2.1 特别说明(必看)](/ch03/ch3.2/3.2)
6565
- 3.2.1 离线物料系统的构建
66-
- [Mysql](ch03/ch3.2/3.2.1.1)
67-
- [MongoDB](ch03/ch3.2/3.2.1.2)
68-
- [Redis](ch03/ch3.2/3.2.1.3)
69-
- [Scrapy](ch03/ch3.2/3.2.1.4)
70-
- [自动化构建用户及物料画像](ch03/ch3.2/3.2.1.5)
66+
- [Mysql](/ch03/ch3.2/3.2.1.1)
67+
- [MongoDB](/ch03/ch3.2/3.2.1.2)
68+
- [Redis](/ch03/ch3.2/3.2.1.3)
69+
- [Scrapy](/ch03/ch3.2/3.2.1.4)
70+
- [自动化构建用户及物料画像](/ch03/ch3.2/3.2.1.5)
7171
- 3.2.2 前后端基础及交互
72-
- [前端基础及Vue实战](ch03/ch3.2/3.2.2.1)
73-
- [flask简介及基础](ch03/ch3.2/3.2.2.2)
74-
- [前后端交互](ch03/ch3.2/3.2.2.3)
75-
- [3.2.3 推荐系统流程的构建](ch03/ch3.2/3.2.3)
72+
- [前端基础及Vue实战](/ch03/ch3.2/3.2.2.1)
73+
- [flask简介及基础](/ch03/ch3.2/3.2.2.2)
74+
- [前后端交互](/ch03/ch3.2/3.2.2.3)
75+
- [3.2.3 推荐系统流程的构建](/ch03/ch3.2/3.2.3)
7676
- 3.2.4 召回
77-
- [规则类召回](ch03/ch3.2/3.2.4.1)
78-
- [YouTubeDNN召回](ch03/ch3.2/3.2.4.2)
79-
- [DSSM召回](ch03/ch3.2/3.2.4.3)
80-
- [3.2.5 DeepFM排序](ch03/ch3.2/3.2.5)
81-
- [3.2.6 重排(打散策略)](ch03/ch3.2/3.2.6)
77+
- [规则类召回](/ch03/ch3.2/3.2.4.1)
78+
- [YouTubeDNN召回](/ch03/ch3.2/3.2.4.2)
79+
- [DSSM召回](/ch03/ch3.2/3.2.4.3)
80+
- [3.2.5 DeepFM排序](/ch03/ch3.2/3.2.5)
81+
- [3.2.6 重排(打散策略)](/ch03/ch3.2/3.2.6)
8282
- 3.2.8 当前问题汇总
83-
- [熟悉推荐系统基本流程问答整理](ch03/ch3.2/3.2.8.1)
84-
- [数据库的基本使用问答整理](ch03/ch3.2/3.2.8.2)
85-
- [离线物料系统的构建问答整理](ch03/ch3.2/3.2.8.3)
83+
- [熟悉推荐系统基本流程问答整理](/ch03/ch3.2/3.2.8.1)
84+
- [数据库的基本使用问答整理](/ch03/ch3.2/3.2.8.2)
85+
- [离线物料系统的构建问答整理](/ch03/ch3.2/3.2.8.3)
8686
- 第四章 推荐系统算法面经
87-
- [4.1 ML与DL基础](ch04/ch4.1)
88-
- [4.2 推荐模型相关](ch04/ch4.2)
89-
- [4.3 热门技术相关](ch04/ch4.3)
90-
- [4.4 业务场景相关](ch04/ch4.4)
91-
- [4.5 HR及其他](ch04/ch4.5)
87+
- [4.1 ML与DL基础](/ch04/ch4.1)
88+
- [4.2 推荐模型相关](/ch04/ch4.2)
89+
- [4.3 热门技术相关](/ch04/ch4.3)
90+
- [4.4 业务场景相关](/ch04/ch4.4)
91+
- [4.5 HR及其他](/ch04/ch4.5)

0 commit comments

Comments
 (0)