Skip to content

Commit 50ec77d

Browse files
committed
Deploy: Update docs and funrec code - 2025-09-08 17:54:45
1 parent cdc18e3 commit 50ec77d

File tree

131 files changed

+1962
-2472
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

131 files changed

+1962
-2472
lines changed

.env.example

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -1,2 +1,2 @@
1-
RAW_DATA_PATH=<YOUR_RAW_DATA_PATH>
2-
PROCESSED_DATA_PATH=<YOUR_PROCESSED_DATA_PATH>
1+
FUNREC_RAW_DATA_PATH=<YOUR_RAW_DATA_PATH>
2+
FUNREC_PROCESSED_DATA_PATH=<YOUR_PROCESSED_DATA_PATH>

README.md

Lines changed: 10 additions & 14 deletions
Original file line numberDiff line numberDiff line change
@@ -1,15 +1,11 @@
1-
# FunRec-推荐系统 [在线阅读](https://datawhalechina.github.io/fun-rec/)
2-
<p align="left">
3-
<img src='https://img.shields.io/badge/python-3.8+-blue'>
4-
<img src='https://img.shields.io/badge/TensorFlow-2.13.0-blue'>
5-
<img src='https://img.shields.io/badge/pandas-2.0.3-brightgreen'>
6-
<img src='https://img.shields.io/badge/scikit--learn-1.3.2+-brightgreen'>
7-
<img src='https://img.shields.io/badge/gensim-4.3.3-brightgreen'>
8-
<img src='https://img.shields.io/badge/networkx-3.1-brightgreen'>
9-
<img src='https://img.shields.io/badge/lightgbm-4.6.0-brightgreen'>
10-
<img src='https://img.shields.io/badge/faiss--cpu-1.7.4-brightgreen'>
11-
<img src='https://img.shields.io/badge/seaborn-0.13.2-brightgreen'>
12-
</p>
1+
<div align=center>
2+
<h1>FunRec 推荐系统</h1>
3+
</div>
4+
<div align="center">
5+
6+
中文 | [English](./README_en.md)
7+
8+
</div>
139

1410
本教程是一本全面系统的推荐系统学习指南,主要面向具有机器学习基础并希望深入推荐算法领域的同学。教程内容涵盖推荐系统的理论基础、核心算法、工程实践和面试准备四个维度,为初学者构建了从理论学习到实战应用再到求职面试的完整学习闭环。
1511

@@ -70,7 +66,7 @@
7066
为了方便学习和交流,**我们建立了FunRec学习社区(微信群+知识星球)**,微信群方便大家平时日常交流和讨论,知识星球方便沉淀内容,B站上还有一些早期录制的相关视频[跟技术相关的分享内容都放在了B站](https://space.bilibili.com/431850986/channel/collectiondetail?sid=339597)。由于微信群的二维码只有7天内有效,所以直接加下面这个微信,备注:**Fun-Rec**,会被拉到Fun-Rec交流群,如果觉得微信群比较吵建议直接加知识星球!。
7167

7268
<div align=center>
73-
<img src="imgs/join_community.png" alt="image-20220408193745249" width="400px";" />
69+
<img src="book/img/join_community.png" alt="image-20220408193745249" width="400px";" />
7470
</div>
7571

7672

@@ -100,7 +96,7 @@
10096
## 关注我们
10197
<div align=center>
10298
<p>扫描下方二维码关注公众号:Datawhale</p>
103-
<img src="imgs/datawhale_qrcode.jpg" width = "180" height = "180">
99+
<img src="book/img/datawhale_qrcode.jpg" width = "180" height = "180">
104100
</div>
105101

106102
Datawhale,一个专注于AI领域的学习圈子。初衷是for the learner,和学习者一起成长。目前加入学习社群的人数已经数千人,组织了机器学习,深度学习,数据分析,数据挖掘,爬虫,编程,统计学,Mysql,数据竞赛等多个领域的内容学习,微信搜索公众号Datawhale可以加入我们。

README_en.md

Lines changed: 109 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,109 @@
1+
<div align=center>
2+
<h1>FunRec Recommendation System</h1>
3+
</div>
4+
<div align="center">
5+
6+
English | [中文](./README.md)
7+
8+
</div>
9+
10+
This tutorial is a comprehensive guide to recommendation systems, primarily aimed at students with basic knowledge of machine learning who want to deepen their understanding of recommendation algorithms. The tutorial covers four perspectives: theoretical foundation, core algorithms, engineering practice, and interview preparation, providing a complete learning loop from theory to practice to job hunting.
11+
12+
## 📚 Tutorial Content Overview
13+
14+
### 🎯 **Recommendation System Overview**
15+
From the basic concepts of recommendation systems, this tutorial comprehensively introduces the significance, application scenarios, technical architecture, and related technical stacks of recommendation systems, helping beginners establish a comprehensive understanding and understanding of recommendation systems.
16+
17+
### 🔍 **Retrieval Model**
18+
Explain the retrieval algorithms in recommendation systems, including:
19+
- **Collaborative Filtering**:Classic user collaborative filtering and item collaborative filtering algorithms
20+
- **Embedding-based Retrieval**:Retrieval methods based on embedding
21+
- **Sequential Retrieval**:Retrieval strategies considering user behavior sequences
22+
23+
### 🎯 **Ranking Model**
24+
Systematically introduce the core technologies of ranking algorithms in recommendation systems:
25+
26+
- **Memorization & Generalization**:Classic models such as Wide & Deep
27+
- **Feature Crossing**:Automated feature crossing methods
28+
- **Sequential Modeling**:User behavior sequence modeling techniques
29+
- **Multi-objective Modeling**:Multi-task learning in recommendation
30+
- **Multi-scenario Modeling**:Cross-domain recommendation and scenario adaptation
31+
32+
### 🔄 **Re-ranking Model**
33+
Discuss the re-ranking techniques in recommendation systems:
34+
- **Greedy Re-ranking**:Simple and efficient re-ranking strategies
35+
- **Personalized Re-ranking**:Consider user-specific re-ranking methods
36+
37+
### 🚀 **Challenges & Trends**
38+
Explore the latest trends and challenges in recommendation systems:
39+
40+
- **Model Debiasing**:Solve the bias problems in recommendation systems
41+
- **Cold Start Problem**:Recommendation strategies for new users and new items
42+
- **Generative Recommendation**:Recommendation methods based on generative models
43+
44+
### 💼 **Projects**
45+
Provide complete practical experience of recommendation systems through real competition cases:
46+
- Problem Understanding and Data Analysis
47+
- Baseline Construction and Optimization
48+
- Multi-retrieval Strategy Design
49+
- Feature Engineering and Ranking Model
50+
51+
### 🎤 **Interview Preparation**
52+
Organize the core knowledge points in the interview for recommendation algorithm engineers:
53+
- Machine Learning Fundamentals
54+
- Core Algorithms of Recommendation Models
55+
- Latest Technologies Development Trends
56+
- Practical Applications in Business Scenarios
57+
- HR Interview Skills
58+
59+
## 🎯 **Learning Objectives**
60+
61+
Through this tutorial, you will be able to:
62+
- 🔧 **Master Core Algorithms**:Deeply understand the core principles of algorithms in each phase of recommendation systems
63+
64+
- 💻 **Gain Practical Experience**:Obtain end-to-end recommendation system development experience through project practice
65+
- 📈 **Keep Up with the Latest Technologies**:Understand the latest trends and technologies in recommendation systems
66+
- 🎯 **Pass the Technical Interview**:Have the competitiveness for recommendation algorithm engineer positions
67+
68+
We also establish a **FunRec learning community (WeChat group + knowledge planet)**, where the WeChat group is convenient for daily communication and discussion, and the knowledge planet is convenient for content retention. Some early recorded videos related to technology are also on Bilibili [All technical sharing content is on Bilibili](https://space.bilibili.com/431850986/channel/collectiondetail?sid=339597). Since the WeChat group's QR code is only valid for 7 days, just add the following WeChat Code, with remark: **Fun-Rec**, you will be added into a Fun-Rec discussion group. If you think the WeChat group is too noisy, it is recommended to add the knowledge planet directly!
69+
70+
<div align=center>
71+
<img src="book/img/join_community.png" alt="image-20220408193745249" width="400px";" />
72+
</div>
73+
74+
75+
## Thanks
76+
**Core Contributors**
77+
78+
<table border="0">
79+
<tbody>
80+
<tr align="center" >
81+
<td>
82+
<a href="https://github.com/ruyiluo"><img width="70" height="70" src="https://github.com/ruyiluo.png?s=40" alt="pic"></a><br>
83+
<a href="https://github.com/ruyiluo">Ruyi Luo</a>
84+
<p><br> MSc, Xidian University <br> Senior Recommendation Algorithm Engineer </p>
85+
</td>
86+
<td>
87+
<a href="https://github.com/bokang-ugent"><img width="70" height="70" src="https://github.com/bokang-ugent.png?s=40" alt="pic"></a><br>
88+
<a href="https://bokang.io">Bo Kang</a>
89+
<p><br> PhD, Ghent University <br> Co-founder of <a href="https://nobl.ai/">nobl.ai</a> </p>
90+
</td>
91+
</tr>
92+
</tbody>
93+
</table>
94+
95+
Special thanks to [kenken-xr](https://github.com/kenken-xr)[swallown1](https://github.com/swallown1)[Lyons-T](https://github.com/Lyons-T)[zhongqiangwu960812](https://github.com/zhongqiangwu960812)[@wangych6](https://github.com/wangych6)[@morningsky](https://github.com/morningsky)[@hilbert-yaa](https://github.com/hilbert-yaa)[@maxxbaba](https://github.com/maxxbaba)[@pearfl](https://github.com/pearfl)[@ChungKingExpress](https://github.com/ChungKingExpress)[@storyandwine](https://github.com/storyandwine)[@SYC1123](https://github.com/SYC1123)[@luzixiao](https://github.com/luzixiao)[@Evan-wyl](https://github.com/Evan-wyl)[@Sm1les](https://github.com/Sm1les)[@LSGOMYP](https://github.com/LSGOMYP) for their early help and support to this project.
96+
97+
98+
## Follow Us
99+
<div align=center>
100+
<p>Scan the QR code below to follow the Datawhale Official Account</p>
101+
<img src="book/img/datawhale_qrcode.jpg" width = "180" height = "180">
102+
</div>
103+
104+
Datawhale, a learning community focused on the field of AI. Our mission is for the learner, and grow together with learners. Currently, there are thousands of people have joined the learning community, and we have organized learning in various fields such as machine learning, deep learning, data analysis, data mining, web crawling, programming, statistics, MySQL, and data competitions. You can join us by searching for the Datawhale Official Account on WeChat.
105+
106+
107+
## LICENSE
108+
<a rel="license" href="http://creativecommons.org/licenses/by-nc-sa/4.0/"><img alt="Creative Commons License" style="border-width:0" src="https://img.shields.io/badge/license-CC%20BY--NC--SA%204.0-lightgrey" /></a>
109+
This work is licensed under a <a rel="license" href="http://creativecommons.org/licenses/by-nc-sa/4.0/">Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License (CC BY-NC-SA 4.0)</a>.
514 Bytes
Loading
3.02 KB
Loading
168 Bytes
Loading
397 Bytes
Loading
-2.3 KB
Loading
-3.92 KB
Loading

docs/_sources/chapter_1_retrieval/1.cf/1.usercf.rst.txt

Lines changed: 5 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -259,9 +259,9 @@ UserCF看起来很简单,但有个大问题:当用户数量很大时,计
259259
.. parsed-literal::
260260
:class: output
261261
262-
+---------------+---------------+--------------+----------------+----------------+---------------+
263-
| hit_rate@10 | hit_rate@20 | hit_rate@5 | precision@10 | precision@20 | precision@5 |
264-
+===============+===============+==============+================+================+===============+
265-
| 0.6912 | 0.7896 | 0.5927 | 0.1643 | 0.1304 | 0.2063 |
266-
+---------------+---------------+--------------+----------------+----------------+---------------+
262+
+---------------+--------------+----------------+---------------+
263+
| hit_rate@10 | hit_rate@5 | precision@10 | precision@5 |
264+
+===============+==============+================+===============+
265+
| 0.6912 | 0.5927 | 0.1643 | 0.2063 |
266+
+---------------+--------------+----------------+---------------+
267267

0 commit comments

Comments
 (0)