Skip to content

Commit 58ac2bd

Browse files
committed
FIx ch03
1 parent cdda49d commit 58ac2bd

File tree

2 files changed

+8
-8
lines changed

2 files changed

+8
-8
lines changed

docs/chapter3/chapter3_2_1.md

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -30,12 +30,12 @@ $$
3030

3131
$$
3232
\begin{gathered}
33-
f(x, y)=f\left(x_k, y_k\right)+\left(x-x_k\right) f_x^{\prime}\left(x_k, y_k\right)+\left(y-y_k\right) f_y^{\prime}\left(x_k, y_k\right) \\
34-
+\frac{1}{2 !}\left(x-x_k\right)^2 f_{x x}^{\prime \prime}\left(x_k, y_k\right)+\frac{1}{2 !}\left(x-x_k\right)\left(y-y_k\right) f_{x y}^{\prime \prime}\left(x_k, y_k\right) \\
35-
+\frac{1}{2 !}\left(x-x_k\right)\left(y-y_k\right) f_{y x}^{\prime \prime}\left(x_k, y_k\right)+\frac{1}{2 !}\left(y-y_k\right)^2 f_{y y}^{\prime \prime}\left(x_k, y_k\right) +\ldots
36-
\end{gathered} \tag{5}
33+
f\left(x^1, x^2, \ldots, x^n\right)=f\left(x_k^1, x_k^2, \ldots, x_k^n\right)+\sum_{i=1}^n\left(x^i-x_k^i\right) f_{x^i}^{\prime}\left(x_k^1, x_k^2, \ldots, x_k^n\right) \\
34+
+\frac{1}{2!} \sum_{i, j=1}^n\left(x^i-x_k^i\right)\left(x^j-x_k^j\right) f_{i j}^{\prime \prime}\left(x_k^1, x_k^2, \ldots, x_k^n\right) +o^n \tag{5}
35+
\end{gathered}
3736
$$
3837

38+
3939
  推广到矩阵形式,可表示为:
4040

4141
$$

docs/chapter3/chapter3_2_2.md

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -32,10 +32,9 @@ $$
3232

3333
$$
3434
\begin{gathered}
35-
f(x, y)=f\left(x_k, y_k\right)+\left(x-x_k\right) f_x^{\prime}\left(x_k, y_k\right)+\left(y-y_k\right) f_y^{\prime}\left(x_k, y_k\right) \\
36-
+\frac{1}{2 !}\left(x-x_k\right)^2 f_{x x}^{\prime \prime}\left(x_k, y_k\right)+\frac{1}{2 !}\left(x-x_k\right)\left(y-y_k\right) f_{x y}^{\prime \prime}\left(x_k, y_k\right) \\
37-
+\frac{1}{2 !}\left(x-x_k\right)\left(y-y_k\right) f_{y x}^{\prime \prime}\left(x_k, y_k\right)+\frac{1}{2 !}\left(y-y_k\right)^2 f_{y y}^{\prime \prime}\left(x_k, y_k\right) +\ldots
38-
\end{gathered} \tag{5}
35+
f\left(x^1, x^2, \ldots, x^n\right)=f\left(x_k^1, x_k^2, \ldots, x_k^n\right)+\sum_{i=1}^n\left(x^i-x_k^i\right) f_{x^i}^{\prime}\left(x_k^1, x_k^2, \ldots, x_k^n\right) \\
36+
+\frac{1}{2!} \sum_{i, j=1}^n\left(x^i-x_k^i\right)\left(x^j-x_k^j\right) f_{i j}^{\prime \prime}\left(x_k^1, x_k^2, \ldots, x_k^n\right) +o^n \tag{5}
37+
\end{gathered}
3938
$$
4039

4140
  推广到矩阵形式,可表示为:
@@ -213,6 +212,7 @@ $$
213212
H_{m+1}^{-1}=H_m^{-1}-\frac{H_m^{-1} \cdot X^{[m+1]} \cdot X^{[m+1] T} \cdot H_m^{-1}}{P+X^{[m+1] T} \cdot H_m^{-1} \cdot X^{[m+1]}} \tag{30}
214213
$$
215214
其中,$H_0^{-1}=\alpha^{-1} I$,$H_P^{-1}=H^{-1}$,$10^{-8}\leq \alpha \leq 10^{-4}$($\alpha$是一个常量,使得${H}_0^{-1}$有意义),只要知道第一项,$H^{-1}$就可以一步步计算出来。
215+
216216
  推广到多个输出,可表示为:
217217
$$
218218
\begin{array}{r}

0 commit comments

Comments
 (0)