-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathSRNet_model.py
162 lines (113 loc) · 4.31 KB
/
SRNet_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import tensorflow as tf
from tensorflow.keras import layers
from tensorflow.keras.models import Model
def conv_layer(input_tensor, num_filters, kernel_size, strides, padding='same'):
# He initializer
filter_initializer = tf.keras.initializers.HeNormal()
# Bias initializer
bias_initializer = tf.keras.initializers.Constant(value=0.2)
# L2 regularization for the filters
filter_regularizer = tf.keras.regularizers.L2(l2=2e-4)
x = layers.Conv2D(num_filters,
kernel_size=kernel_size,
strides=strides,
padding=padding,
kernel_initializer=filter_initializer,
bias_initializer=bias_initializer,
kernel_regularizer=filter_regularizer,
use_bias=True)(input_tensor)
return x
def layer_T1(input_tensor, num_filters):
# Convolutional layer
x = conv_layer(input_tensor,
num_filters=num_filters,
kernel_size=(3, 3),
strides=1)
# Batch normalization layer
x = layers.BatchNormalization(momentum=0.9)(x)
# ReLU activation layer
x = layers.ReLU()(x)
return x
def layer_T2(input_tensor, num_filters):
# Add the layer T1 to the beginning of Layer T2
x = layer_T1(input_tensor, num_filters)
# Convolutional layer
x = conv_layer(x,
num_filters=num_filters,
kernel_size=(3, 3),
strides=1)
# Batch normalization layer
x = layers.BatchNormalization(momentum=0.9)(x)
# Create the residual connection
x = layers.add([input_tensor, x])
return x
def layer_T3(input_tensor, num_filters):
# MAIN BRANCH
# Add the layer T1 to the beginning of Layer T2
x = layer_T1(input_tensor, num_filters)
# Convolutional layer
x = conv_layer(x,
num_filters=num_filters,
kernel_size=(3, 3),
strides=1)
# Batch normalization layer
x = layers.BatchNormalization(momentum=0.9)(x)
# Average pooling layer
x = layers.AveragePooling2D(pool_size=(3, 3),
strides=2,
padding='same')(x)
# SECONDARY BRANCH
# Special convolutional layer.
y = conv_layer(input_tensor,
num_filters=num_filters,
kernel_size=(1, 1),
strides=2)
# Batch normalization layer
y = layers.BatchNormalization(momentum=0.9)(y)
# Create the residual connection
output = layers.add([x, y])
return output
def layer_T4(input_tensor, num_filters):
# Add the layer T1 to the beginning of Layer T2
x = layer_T1(input_tensor, num_filters)
# Convolutional layer
x = conv_layer(x,
num_filters=num_filters,
kernel_size=(3, 3),
strides=1)
# Batch normalization layer
x = layers.BatchNormalization(momentum=0.9)(x)
# Global Average Pooling layer
x = layers.GlobalAveragePooling2D()(x)
return x
def fully_connected(input_tensor):
# Dense weight initializer N(0, 0.01)
dense_initializer = tf.random_normal_initializer(0, 0.01)
# Bias initializer for the fully connected network
bias_dense_initializer = tf.constant_initializer(0.)
x = layers.Flatten()(input_tensor)
x = layers.Dense(512,
activation=None,
use_bias=False,
kernel_initializer=dense_initializer,
bias_initializer=bias_dense_initializer)(x)
output = layers.Dense(1, activation='sigmoid')(x)
return output
def create_SRNet(input_image_size):
# The input layer has the shape (256, 256, 1)
input_layer = layers.Input(shape=input_image_size)
x = layer_T1(input_layer, 64)
x = layer_T1(x, 16)
x = layer_T2(x, 16)
x = layer_T2(x, 16)
x = layer_T2(x, 16)
x = layer_T2(x, 16)
x = layer_T2(x, 16)
x = layer_T3(x, 16)
x = layer_T3(x, 64)
x = layer_T3(x, 128)
x = layer_T3(x, 256)
x = layer_T4(x, 512)
output = fully_connected(x)
model = Model(inputs=input_layer, outputs=output, name="SRNet")
return model