forked from dongxr2/RS-DataFusion
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_rs.py
164 lines (136 loc) · 6.07 KB
/
train_rs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import os
import numpy as np
from PIL import Image
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader
import torchvision.transforms as transforms
import segmentation_models_pytorch as smp
import matplotlib.pyplot as plt
# 定义颜色列表
label_colors = [
(254, 246, 201), # 耕地
(16, 118, 75), # 森林
(172, 212, 90), # 草地
(57, 179, 115), # 灌木地
(124, 209, 245), # 湿地
(0, 87, 155), # 水体
(96, 102, 48), # 苔原
(147, 45, 16), # 人造地表
(206, 203, 206), # 裸土
(214, 242, 255) # 冰川和永久积雪
]
#label_colors = [tuple(reversed(color)) for color in label_colors]
# 定义数据集类
class CustomDataset(Dataset):
def __init__(self, root_dir):
self.root_dir = root_dir
self.image_dir = os.path.join(root_dir, 'image')
self.mask_dir = os.path.join(root_dir, 'label')
self.image_files = os.listdir(self.image_dir)
def __len__(self):
return len(self.image_files)
def __getitem__(self, idx):
img_name = os.path.join(self.image_dir, self.image_files[idx])
mask_name = os.path.join(self.mask_dir, self.image_files[idx])
image = Image.open(img_name).convert('RGB')
mask = Image.open(mask_name).convert('RGB') # 提取RGB标签图
# 处理RGB标签图为索引形式
mask = np.array(mask)
mask_index = np.zeros(mask.shape[:2], dtype=np.uint8)
for i, color in enumerate(label_colors):
mask_index[(mask == color).all(axis=2)] = i
'''unique_values, counts = np.unique(mask_index, return_counts=True)
count_sum=0
# 输出每个值及其对应个数
for value, count in zip(unique_values, counts):
print(f"Value {value}: {count} times")
count_sum+=count
print(f"Total: {count_sum}")
input()'''
mask_one_hot = np.eye(len(label_colors))[mask_index]
mask_tensor = torch.tensor(mask_one_hot.transpose(2, 0, 1), dtype=torch.float32)
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
image = transform(image)
return image, mask_tensor
# 定义模型
class DLModel(nn.Module):
def __init__(self):
super(DLModel, self).__init__()
#self.model = smp.Unet('resnet18', in_channels=3, classes=10)
#self.model = smp.UnetPlusPlus('resnet18', in_channels=3, classes=10)
#self.model = smp.DeepLabV3('resnet18', in_channels=3, classes=10)
#self.model = smp.DeepLabV3Plus('resnet18', in_channels=3, classes=10)
#self.model = smp.MAnet('resnet18', in_channels=3, classes=10)
#self.model = smp.DeepLabV3PWT('resnet18', in_channels=3, classes=10)
#self.model=smp.PSPNet('resnet18', in_channels=3, classes=10)
#self.model=smp.FPN('resnet18',in_channels=3,classes=10)
#self.model=smp.PAN('resnet18',in_channels=3,classes=10)
#self.model=smp.Linknet('resnet18',in_channels=3,classes=10)
#-----------self.model = smp.UnetTB('resnet18', in_channels=3, classes=10)
self.model = smp.EffiTUnet('resnet18', in_channels=3, classes=10)
#self.model=smp.UnetPlusPlusWT('resnet18', in_channels=3, classes=10)
#self.model=smp.PSPNetWT('resnet18',in_channels=3,classes=10)
def forward(self, x):
return self.model(x)
# 训练函数
import torch
import matplotlib.pyplot as plt
def train(model, train_loader, criterion, optimizer, num_epochs=10, save_loss_path=None, save_model_path=None, save_best_only=True, save_interval=1):
model.train()
loss_values = []
best_loss = float('inf')
for epoch in range(num_epochs):
running_loss = 0.0
for inputs, masks in train_loader:
inputs = inputs.to(device)
masks = masks.to(device)
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, masks)
loss.backward()
optimizer.step()
running_loss += loss.item() * inputs.size(0)
epoch_loss = running_loss / len(train_loader.dataset)
print(f'Epoch {epoch+1}/{num_epochs}, Loss: {epoch_loss:.4f}')
loss_values.append(epoch_loss)
# 保存loss图像
if save_loss_path:
plt.plot(loss_values, label='Training Loss')
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.title('Training Loss')
plt.legend()
plt.savefig(save_loss_path)
plt.close()
# 动态保存模型
if save_model_path:
# 保存每隔`save_interval`个epoch的模型
if not save_best_only and (epoch + 1) % save_interval == 0:
torch.save(model.state_dict(), f"{save_model_path}_epoch_{epoch+1}.pth")
# 只保存loss最低的模型
if save_best_only and epoch_loss < best_loss:
best_loss = epoch_loss
torch.save(model.state_dict(), f"{save_model_path}_best.pth")
# 设置训练参数
root_dir = 'dataset'
batch_size = 128 #pspnet/wt 64,others 128
learning_rate = 0.001
num_epochs = 100
model_keyword="manet"
save_loss_path = f'training_loss_plot_rs_{model_keyword}.png'
save_model_path = f'rs_{model_keyword}.pth'
# 准备数据
dataset = CustomDataset(root_dir)
train_loader = DataLoader(dataset, batch_size=batch_size, shuffle=True)
# 初始化模型、损失函数和优化器
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = DLModel().to(device)
criterion = nn.BCEWithLogitsLoss() # 多类别损失
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
# 训练模型
train(model, train_loader, criterion, optimizer, num_epochs=num_epochs, save_loss_path=save_loss_path, save_model_path=save_model_path)