-
Notifications
You must be signed in to change notification settings - Fork 1.1k
/
Copy pathutils.py
176 lines (148 loc) · 5.84 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0
# DeepSpeed Team
import os
import torch
import random
import numpy as np
from transformers import set_seed, AutoTokenizer
import json
import deepspeed
from deepspeed.runtime.zero.partition_parameters import ZeroParamStatus
def print_rank_0(msg, rank=0):
if rank <= 0:
print(msg)
def to_device(batch, device):
output = {}
for k, v in batch.items():
try:
output[k] = v.to(device)
except:
output[k] = v
return output
class MovingAverage:
def __init__(self):
self.count = 0
self.total = 0
self.mean = 0
def update(self, num):
self.total += num
self.count += 1
self.mean = self.total / self.count
return self.mean
def load_hf_tokenizer(model_name_or_path, fast_tokenizer=True):
try:
return AutoTokenizer.from_pretrained(model_name_or_path,
fast_tokenizer=True)
except:
pass
if os.path.exists(model_name_or_path):
# Locally tokenizer loading has some issue, so we need to force download
model_json = os.path.join(model_name_or_path, "config.json")
if os.path.exists(model_json):
model_json_file = json.load(open(model_json))
model_name = model_json_file["_name_or_path"]
tokenizer = AutoTokenizer.from_pretrained(model_name,
fast_tokenizer=True)
else:
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path,
fast_tokenizer=True)
return tokenizer
def save_hf_format(model, tokenizer, args, sub_folder=""):
# used to save huggingface format, so we can use it for hf.from_pretrained
model_to_save = model.module if hasattr(model, 'module') else model
CONFIG_NAME = "config.json"
WEIGHTS_NAME = "pytorch_model.bin"
output_dir = os.path.join(args.output_dir, sub_folder)
os.makedirs(output_dir, exist_ok=True)
output_model_file = os.path.join(output_dir, WEIGHTS_NAME)
output_config_file = os.path.join(output_dir, CONFIG_NAME)
save_dict = model_to_save.state_dict()
for key in list(save_dict.keys()):
if "lora" in key:
del save_dict[key]
torch.save(save_dict, output_model_file)
model_to_save.config.to_json_file(output_config_file)
tokenizer.save_vocabulary(output_dir)
def set_random_seed(seed):
if seed is not None:
set_seed(seed)
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
def get_all_reduce_mean(tensor):
torch.distributed.all_reduce(tensor, op=torch.distributed.ReduceOp.SUM)
tensor = tensor / torch.distributed.get_world_size()
return tensor
def get_optimizer_grouped_parameters(model,
weight_decay,
no_decay_name_list=[
"bias", "LayerNorm.weight"
]):
optimizer_grouped_parameters = [
{
"params": [
p for n, p in model.named_parameters()
if (not any(nd in n
for nd in no_decay_name_list) and p.requires_grad)
],
"weight_decay":
weight_decay,
},
{
"params": [
p for n, p in model.named_parameters()
if (any(nd in n
for nd in no_decay_name_list) and p.requires_grad)
],
"weight_decay":
0.0,
},
]
return optimizer_grouped_parameters
def _z3_params_to_fetch(param_list):
return [
p for p in param_list
if hasattr(p, 'ds_id') and p.ds_status == ZeroParamStatus.NOT_AVAILABLE
]
def moving_average(model, model_ema, beta=0.992, device=None, zero_stage=0):
zero_stage_3 = (zero_stage == 3)
with torch.no_grad():
for param, param_ema in zip(model.parameters(),
model_ema.parameters()):
# TODO: use prefiltering for efficiency
params_to_fetch = _z3_params_to_fetch([param, param_ema
]) if zero_stage_3 else []
should_gather_param = len(params_to_fetch) > 0
with deepspeed.zero.GatheredParameters(
params_to_fetch, enabled=should_gather_param):
data = param.data
if device is not None:
data = data.to(device)
param_ema.data.copy_(torch.lerp(data, param_ema.data, beta))
def save_zero_three_model(model_ema, global_rank, save_dir, zero_stage=0):
zero_stage_3 = (zero_stage == 3)
os.makedirs(save_dir, exist_ok=True)
WEIGHTS_NAME = "pytorch_model.bin"
output_model_file = os.path.join(save_dir, WEIGHTS_NAME)
model_to_save = model_ema.module if hasattr(model_ema,
'module') else model_ema
if not zero_stage_3:
if global_rank == 0:
torch.save(model_to_save.state_dict(), output_model_file)
else:
output_state_dict = {}
for k, v in model_to_save.named_parameters():
if hasattr(v, 'ds_id'):
with deepspeed.zero.GatheredParameters(_z3_params_to_fetch([v
]),
enabled=zero_stage_3):
v_p = v.data.cpu()
else:
v_p = v.cpu()
if global_rank == 0 and "lora" not in k:
output_state_dict[k] = v_p
if global_rank == 0:
torch.save(output_state_dict, output_model_file)
del output_state_dict