Open
Description
cd training/step2_reward_model_finetuning/
bash training_scripts/single_node/run_llama.sh
run_llama.sh contains
#!/bin/bash
# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0
# DeepSpeed Team
OUTPUT=$1
ZERO_STAGE=$2
if [ "$OUTPUT" == "" ]; then
OUTPUT=./output
fi
if [ "$ZERO_STAGE" == "" ]; then
ZERO_STAGE=0
fi
mkdir -p $OUTPUT
deepspeed main.py \
--data_path some_data \
--data_split 2,4,4 \
--model_name_or_path path_to_llama \
--num_padding_at_beginning 1 \
--per_device_train_batch_size 1 \
--per_device_eval_batch_size 1 \
--gradient_checkpointing \
--max_seq_len 512 \
--learning_rate 5e-5 \
--weight_decay 0.1 \
--num_train_epochs 1 \
--disable_dropout \
--gradient_accumulation_steps 1 \
--lr_scheduler_type cosine \
--num_warmup_steps 0 \
--seed 1234 \
--zero_stage $ZERO_STAGE \
--deepspeed \
--output_dir $OUTPUT \
&> $OUTPUT/training.log
Even if I set the per_device_train_batch_size = 1 and use gradient_checkpointing, I still have an OOM problem. Any solutions?